
IEEE Communications Magazine • June 201660 0163-6804/16/$25.00 © 2016 IEEE

AbstrAct

Social insect colonies have survived over 
evolutionary time in part due to the success of 
their collaborative methods: using local informa-
tion and distributed decision making algorithms 
to detect and exploit critical resources in their 
environment. These methods have the unusu-
al and useful ability to detect anomalies rapid-
ly, with very little memory, and using only very 
local information. Our research investigates the 
potential for a self-organizing anomaly detection 
system inspired by those observed naturally in 
colonies of honey bees. We provide a summary of 
findings from a recently presented algorithm for 
a nonparametric, fully distributed coordination 
framework that translates the biological success 
of these methods into analogous operations for 
use in cyber defense and discuss the features that 
inspired this translation. We explore the impacts 
on detection performance of the defined range of 
distributed communication for each node and of 
involving only a small percentage of total nodes 
in the network in the distributed detection com-
munication. We evaluate our algorithm using 
a software-based testing implementation, and 
demonstrate up to 20 percent improvement in 
detection capability over parallel isolated anom-
aly detectors.

IntroductIon
Over the past years, cyber-attackers have taken 
advantage of the massive acceleration in the 
adoption of virtualization and cloud computing, 
the Internet of Things (IoT), and mobile devices 
as an increase in potential targets and expanding 
attack surface. Motivations are the major char-
acteristics that differentiate malicious actors. 
Organized crime is interested in economic gain, 
nation-states are mostly interested in cyber-es-
pionage, whereas hacktivists can be motivated 
politically or ideologically.1 Cyber-attack strat-
egies have also evolved significantly: modern 
malicious activities are spread stealthily over a 
large number of malicious machines. Those can 
be compromised or rented from so-called bul-

letproof hosting providers that ignore all abuse 
notifications [1]. This increases the chance of 
cyber-criminal success, either decreasing the 
probability the attack will be noticed or launch-
ing a distributed denial of service (DDoS) attack 
as a smokescreen to cover virus or malware 
installation, and/or financial or data theft.2

To address these more challenging types of 
cyber-attacks, recent defenses have introduced 
the idea of sharing information across organi-
zational boundaries, allowing collaboration to 
achieve rapid detection and mitigation for a vari-
ety of cyber-attacks, especially those for which 
prior knowledge is scant or nonexistent. Indeed, 
an entire new infrastructure is being created with 
new sharing protocols, cyber threat “exchanges,” 
and government backing. Automated cyber data 
processing and sharing is already being promoted 
as the new defensive strategy against smart and 
highly distributed adversaries. However, there 
are some fundamental challenges to address 
before this paradigm can become reality, such as: 
• Policy issues that prevent sensitive data from 

being shared between organizations
• System scalability
• Semantics of the data being exchanged
• Alert correlation
As cyber-attacks are evolving rapidly, the data 
captured in one particular environment may be 
incomparable to data from another, vitiating any 
gains from sharing. Any form of detection that 
relies on comparison of semantically rich data is 
thus in jeopardy if the data comes from sensors 
in different domains. Even if direct comparison 
is possible, it is not guaranteed that the existing 
alert correlation techniques will be able to recon-
struct novel, complex attack scenarios.

Honey bees As An 
evolved AnomAly detectIon mAcHIne

Colonies of honey bees rely on foraging work-
ers to discover and share locations of flowering 
plants from which to gather the pollen and nectar 
used for food. The colony operates under many 
time-varying constraints: different plants flower 
at different times of year and/or day, other ani-
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mals also eat the plants/flowers, or the nectar 
and pollen are depleted by both direct competi-
tion with other insects/bees and by their own col-
ony mates having already gathered the resources, 
making additional trips redundant. Each of these 
challenges must be met efficiently since the rate 
of resource acquisition determines the probabil-
ity of colony growth, reproduction, and survival 
through the winter [2]. Meeting these challeng-
es requires the colony (using only the relatively 
simple cognition and communication available 
to bees) to identify locations richest in resources, 
communicate their location to comrades, exploit 
them quickly, and abandon depleted locations 
rapidly in favor of alternate sources. Honey bees 
manage to meet these challenges with startling 
efficiency by a very simple method: each for-
ager evaluates each site they visit; if a forager 
is excited by the resource richness of the site, 
she returns and tells a subset of her comrades 
the location of the resource and her own rela-
tive level of excitement (via mathematical dance 
language). Bees who receive her signal decides 
whether or not she was excited enough to merit 
their own trip to the site. If they go, they either 
return just as excited to recruit others, or else 
disagree, decide the site was not exciting enough, 
and search for a new site themselves or wait for 
another comrade to recruit. This system fulfills 
many desirable features: excitement waxes and 
wanes endogenously with site quality, sites are 
exploited while also searching for new sites, indi-
viduals identify new sites that do not fit the cur-
rent predominant interest, and attention accrues 
very rapidly at any site consensus deems worth-
while without the need for bees to agree a priori 
on any single definition of “exciting.”

puttIng bees to work In cyber-defense

In this article we define HONIED: Hive Over-
sight for Network Intrusion Early Warning using 
DIAMoND — a bee-inspired method for fully 
distributed cyber defense. Our research is the 
first to investigate the potential for a self-orga-
nizing anomaly detection system inspired by the 
distributed algorithms colonies of honey bees 
use to forage efficiently to provide appropriate, 
dynamic detection thresholds for anomalous 
event patterns on computer system networks to 
improve early detection and mitigation methods 
to counter malicious threats.

Our approach addresses some of the main 
challenges of distributed defense strategies. 
The proposed system allows for cooperation 
between sensors in an arbitrary virtual topolo-
gy and does not rely on sharing the particulars 
of the underlying event, but only the pattern of 
“excitation” seen in the sensors. By its nature 
this data does not contain any individually sensi-
tive information, or even any information about 
the specific attack. We expect that overcoming 
organizational hurdles that may prevent sharing 
of such data would be far easier. For the same 
reason, our scheme easily addresses the third and 
fourth challenges; because the data shared is very 
simple (not even individual values for detection 
thresholds are shared), there is no question of 
creating semantic equivalence or complex cor-
relation techniques. Finally, the scheme enables 
sensors to self-tune their individual detection 

threshold values using a feedback mechanism. 
When new attack patterns appear, the sensors 
learn by cooperation to sense them — it takes 
some time, but there is no prior modeling that 
has to be applied to the sensors. That makes our 
scheme especially appealing for detecting novel 
network attacks assuming that some controls 
(e.g., local intrusion detection systems) are able 
to detect their symptoms.

relAted work
There have been several proposals for fully dis-
tributed systems [3–7]. Locasto et al. proposed 
a fully distributed peer-to-peer (P2P) intrusion 
detection system (IDS) called Worminator [4]. 
The system creates and shares between the 
federations of nodes compact watchlists of IP 
addresses encoded in Bloom filters. Another P2P 
approach for collaborative intrusion detection 
is proposed by Zhou et al. [5]. It implements a 
distributed hash table (DHT) system to share 
detection information. Each peer submits its 
blacklist to a fully distributed P2P overlay. The 
participating nodes are notified if other peers 
are attacked by the same source. However, both 
methods use a single traffic feature, which might 
be too restrictive for detecting some important 
characteristics of large-scale intrusions.

In a distributed IDS proposed by Dash et al. 
[6], local detectors use a binary classifier to ana-
lyze incoming/outgoing host traffic and raise an 
alarm if a threshold value is crossed. Through 
their information sharing system (ISS), those 
alarms are sent to a random set of global detec-
tors that generate a global view of security sta-
tus of the system being monitored. DefCOM [7], 
which is a distributed system for DDoS mitiga-
tion, consists of three types of nodes: core, classi-
fier, and alert generator nodes. It implements an 
overlay communication protocol between source, 
victim, and core networks to detect and block the 
attack at the source. One of the main drawbacks 
of both systems, however, is the separation of 

Figure 1. Literature in bio-inspired algorithms.
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different types of nodes and the need for the sys-
tems to coordinate messages between them.

While bio-inspired (cf. Fig. 1, e.g., [8]), and 
honey-bee-based algorithms in particular, are 
not new [9, 10], our approach is among the first 
to apply them to distributed-decision-driven 
cyber-security systems.

Honey bee-InspIred detectIon system

formIng tHe AnAlogIes wItH Honey bee forAgIng

In honey bee foraging [2], system participants do 
not define the search target a priori, instead let-
ting participants identify anomalies (resources) 
as they encounter them. This feature is one of 
the most important benefits we anticipate from 
adopting this bio-inspired perspective, particu-
larly when detecting complex network attacks 
that might coincide with each other (in which 
there are no known patterns for which to look). 
In honey bee foragers, if enough participants 
identify a location as a valuable target (i.e., an 
anomaly), it becomes an anomaly by definition. 
Furthermore, as an anomaly is handled (i.e., 
resources are exploited), participants gradually 
lose interest, ceasing to identify the location as 
anomalous. 

Another important feature of the system is 
that foragers who act as early scouts return to 
recruit additional foragers to help exploit identi-

fied anomalies (i.e., resources). They communi-
cate not only the location, but also their “relative 
excitement” about the quality of the discovered 
resources to all other bees within range, called 
the foraging dance floor. This is functionally 
equivalent to a nonparametric description of per-
ceived importance of the identified target, allow-
ing very rapid and low-overhead communication 
and census-taking for collaborative decision mak-
ing. This real-time collaborative definition of 
anomalies makes the system uniquely suited to 
discover novel targets by eliminating the need to 
employ any form of uniform template for com-
parison or recognition. We critically also adopt 
these features in our algorithm design.

Basing our algorithm on this system, instead 
of traditional distributed network anomaly detec-
tion (in which we must have a list of known 
patterns that indicate attacks and/or legitimate 
traffic), we instead allow emergent consensus to 
draw attention to patterns, even if some partic-
ipants would not have identified the pattern as 
indicating an attack if assessed only independent-
ly.

system bAsIcs

We use Distributed Intrusion/Anomaly Monitor-
ing for Nonparametric Detection (DIAMoND): 
a nonparametric, fully distributed coordination 
framework that decouples local intrusion detec-
tion functions from network wide coordination. 
DIAMoND first builds coordination overlay net-
works on top of physical networks. DIAMoND 
then dynamically combines direct observations 
of traditional localized/centralized network IDS 
(NIDS) with knowledge exchanged with other 
coordinating nodes called neighbors to dynam-
ically detect anomalies of underlying physi-
cal systems. Specifically, coordinating nodes in 
DIAMoND, analogous to honey bees, exchange 
generic nonparametric levels of concern between 
neighbors that reflect the observed probabili-
ty of network attacks without elaborating any 
further details on the attacks themselves. As a 
result, the coordination layer of the DIAMoND 
framework can readily be coupled with any local 
detection schemes without the need for increas-
ing the detection feature sets. The coordination 
network layer is also decoupled from the under-
lying physical network layer to facilitate flexible 
coordination strategies based on, for example, 
previously observed correlated behaviors, instead 
of being artificially limited to direct connectivity 
or geographical proximity. Interactions inside 
DIAMoND are limited to local neighborhood 
(e.g., one- or two-hop neighbors) in the overlay 
network, thus ensuring system scalability linear 
to the coordination network density instead of 
network size. While in general there can still be 
potential risks for recovery of sensitive infor-
mation from the sharing of only nonparametric 
descriptors, in this case, since there is no need 
for/assumption of a uniform individual detec-
tion algorithm for local determination of level of 
excitement/concern across participating nodes, 
or even for a single node over time, no inference 
can be made simply from the nonparametric 
information shared about more sensitive fea-
tures. The overall architecture of DIAMoND 
thus allows preservation of potentially sensitive 

Figure 2. DIAMoND architecture.
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information of individual participating parties, 
which eases deployment of DIAMoND across 
political and administrative boundaries. 

system desIgn
ArcHItecture overvIew

DIAMoND is deployed over multiple nodes 
(switches, middleboxes) in a fully distributed 
architecture (Fig. 2). We define a node’s neigh-
borhood as a subset of all nodes with which it 
directly exchanges nonparametric alert-related 
information. Neighborhoods are dynamic and 
can change over time based on, for example, 
previously observed correlated behaviors or 
changes in the network topology. Two collabo-
rating nodes enjoy a symbioti, mutual relation-
ship, meaning both must authenticate each other 
and agree to join each other’s neighborhoods. 
Furthermore, each node is equipped with two 
functional units: a detection unit (DU) and a 
coordination unit (CU). The former is respon-
sible for the data-driven individual assessment 
of the so-called threat level — the level of likeli-
hood that an intrusion is occurring based on the 
direct observation reported by local NIDS and/
or firewall implementation. The latter calculates 
the concern level, which is a function of its own 
threat level and the concern levels of its neighbors 
(Fig. 2). 

detectIon unIt

Any detection or security intelligence such as 
NIDS or firewalls can be implemented in a DU 
as long as there is an appropriate plug-in to a 
CU to translate the output of the DU to the 
nonparametric threat level. Additionally, there 
must be an incorporated appropriate response 
by the DU to different levels of concerns of its 
neighbors (e.g., tuning of sensitivity thresholds). 
To foster interoperability, we do not require the 
extraction and provision of any potentially sensi-
tive and/or incomparable attack details. In fact, 
a node may choose any local anomaly detection 
method independent from any other node(s), 
thereby making it difficult for an attacker to 
manipulate the local anomaly detection’s influ-
ence on the CU network by making it harder to 
predict what types of traffic may trigger an indi-
vidual, local intrusion warning. These features 
greatly increase the potential of such a system to 
be able to detect diverse characteristics of large-
scale network attacks, depending on a variety 

of local detection algorithms adapted to DIA-
MoND.

coordInAtIon unIt

Each of the participating nodes has an inter-
nal set of sensitivity thresholds corresponding to 
their “native” detection algorithms. These sen-
sitivity thresholds are updated dynamically over 
time, and there is no a priori assumption of their 
uniformity across nodes. Since each node may 
employ its own local anomaly detector, these 
thresholds are also completely independent of 
each other. The sensitivity threshold is a func-
tion of the observed threat level and the level of 
concern of each node’s neighborhood. Note that 
even if the sensitivity threshold is dynamic, it can 
be updated within a certain predefined range to 
prevent malicious tuning.

At each time instance, each node computes a 
function of the observed threat level, which is the 
individual data-driven assessed level of the likeli-
hood that an anomaly is occurring.

We assign values low, med, high to the threat 
level for each node in each time instant based on 
the traffic observed in the local intrusion detec-
tion on that node. Values are defined such that 
low indicates a completely normal classification, 
med indicates that traffic patterns have exceeded 
some fixed numbers of standard deviations from 
normal but have not yet exceeded the rate lim-
iting threshold to be considered an attack, and 
high indicates classification of a current attack by 
the local anomaly detector.

Each node has a level of concern at every time 
instant, which is a function of both the previous-
ly assessed threat level and of the total impact 
of the concerns of all nodes within its neighbor-
hood computed by our naïve excitation algorithm 
that takes discrete values low, med, high. Values 
are defined such that low indicates a consensus 
between a node’s neighbors and normal network 
state, med indicates that traffic patterns observed 
within a neighborhood have deviated from nor-
mal traffic distributions but have not yet exceed-
ed some thresholds to be considered an attack, 
and high indicates classification by the node’s 
neighborhood of a current attack. 

Finally, each node determines the strength 
of influence of the levels of concern from its 
neighbors. This strength allows a node to tune 
preference between sensitivity and specificity 
provided by the collaborative network. We here 

Figure 3. Neighborhood strategies: a) hop limit TTL = 1; b) hop limit TTL = 2; c) correlated attacks neighborhood.

TTL = 1 TTL = 1

TTL = 1

TTL = 2

TTL = 2
TTL = 2

TTL = 2 TTL = 2

TTL = 2

TTL = 2

TTL = 2

TTL = 1

TTL = 1 TTL = 1

TTL = 1TTL = 1

TTL = 1

TTL = 1

TTL = 3

TTL = 1
TTL = 1

TTL = 1A A A

(a) (b) (c)

TTL = 1



IEEE Communications Magazine • June 201664

present the full results for a moderate strength of 
influence, but results from other choices may be 
found in [11].

neIgHborHood strAtegIes

Honey bees incorporate the influence of other 
nodes into their decision on whether or not to 
reinforce the signal as discussed earlier. We 
define and investigate two different strategies for 
creating the “areas” or neighborhoods to max-
imize the flow of meaningful information while 
minimizing the number of connections.

The first strategy is based on a hop limit that 
reflects the geographical or administrative dis-
tance between neighbors. In the simplest but 
very effective form, we define a neighborhood of 
a node by direct physical or logical connection. 
We also attempt to empirically verify the appli-

cation of the extended neighborhoods by increas-
ing the time to live (TTL) value (Figs. 3a and 
3b). Another strategy, depicted in Fig. 3c, con-
sists of correlating previously observed attacks 
and constructing neighborhoods based on the 
assumption that malicious activity may reoccur 
and be launched from the same set of compro-
mised machines and/or against the same victims 
(networks, servers). 

evAluAtIon testbed
We have developed our prototype communi-
cation protocol as an OpenFlow controller in 
the POX environment3 and evaluated it using 
the Mininet 2.0 network emulator.4 Our initial 
software system deployment consists of 20 nodes 
due to computational constraints and up to 20 
end-user machines connected to each node. The 
full specification together with the communica-
tion protocol is available to the public.5

In this article, we test the performance of the 
algorithm on an “extended star” physical topol-
ogy that represents a tree of 19 links which is 
generated by initiating the graph with a “root” 
node and then attaching each subsequently creat-
ed node to one of the already existing nodes in a 
uniform fashion.

In our experimental evaluation, we use traf-
fic captured from the trans-Pacific line (sam-
plepoint-F, 150 Mb/s).6 The traffic is labeled 
by the MAWI working group as anomalous or 
normal using an advanced graph-based meth-
od that combines responses from independent 
anomaly detectors built on principal compo-
nent analysis (PCA), the gamma distribution, 
the Kullback-Leibler divergence, and the Hough 
transform [12]. Then we develop our method 
based on an X-means algorithm. Finally, we filter 
all traffic labeled as anomalous by each classifica-
tion method and use the remaining traffic in our 
benchmark traffic generator.

Each node has been equipped with a sampling 
detection algorithm for detecting SYN flooding 
attacks and TCP portscan activity [13]. The meth-
od considers TCP connections as legitimate if it 
samples one of multiple acknowledgment (ACK) 
segments (with disabled SYN flag) coming from 
the server. It defines two traffic features: a num-
ber of outgoing SYN segments to correspond-
ing incoming ACK segments per source and per 
destination IP address. The method is combined 
with a rate limiting scheme — if the traffic rate 
is less than or equal to a predefined rate for a 
given IP address, it is allowed to pass the filter, 
whereas traffic that exceeds the rate is dropped. 
For the purpose of this study, we refer to the 
above-described algorithm as benchmark local 
intrusion detector (BLID). To meet the needs 
of our system, we extend the proposed algorithm 
and define the range of sensitivity rate limiting 
thresholds as well as the plug-in that translates 
the output of the algorithm to the nonparametric 
thread level.

We evaluate the capability of our system 
using two predominant attacks exploiting TCP 
protocol: network-wide SYN stealth scans and 
SYN flooding attacks that are launched from a 
selected percentage of the network nodes, which 
are considered compromised and take part in a 
coordinated distributed attack. For more details 

3 https://openflow.stanford.edu 
 
4 http://mininet.org 
 
5 http://mkorczynski.com/diamond.
html 
 
6 http://mawi.wide.ad.jp/mawi

Figure 4. Comparison of DIAMoND vs. BLID for network-wide stealth scans 
(top) and DDoS attacks (bottom). We also explored the impact of either 
strengthening (strong) or weakening (weak) the influence of network 
neighbors to show the robustness of effect and test system sensitivity to 
individual-node-level detection accuracy.
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on the tesbed, we refer the reader to our previ-
ous work [11].

emulAtIon results
crIterIA of detectIon evAluAtIon

To assess the performance of DIAMoND, we 
consider three meaningful metrics: sensitivity, 
specifi city, and overall system accuracy. Sensitiv-
ity measures the proportion of malicious packets 
that are correctly identifi ed as such, and specifi city 
measures the proportion of legitimate packets that 
are correctly identifi ed as such, whereas accuracy 
measures the proportion of packets correctly iden-
tifi ed malicious and legitimate to all the packets.

Also, we quantify the additional information 
that is gained by deploying our system on top 
of BLIDs. In other words, we ask by how much, 
if at all, the inclusion of the DIAMoND collab-
oration among nodes improves their accuracy 
relative to their use of only the local detection 
algorithms in isolation. In order to evaluate the 
information gain we use an information theoretic 
approach, Kullback-Leibler (K-L) divergence.

It is important to recall that the potential for 
improvement in accuracy is scaled by the per-
cent of malicious packets. Since in the case of 
network-wide stealth scans malicious packets 
constitute a smaller percentage of all network 
traffi c, the increase in accuracy is strictly bound-
ed, meaning that, for example, 0.045 represents 
a substantial improvement relative to the range 
possible for improvement.

detectIon performAnce

Figure 4 shows a sensitivity as a function of 1 – 
specificity for network-wide stealth scans (top) 
and DDoS attacks (bottom) in an overlay net-
work where neighborhoods are created on the 
basis of direct physical connections (TTL = 
1). We present results that reflect participating 
nodes assigning a moderate level of influence 
from the concern levels of their neighbors to 
their own decision, but then also present results 
from both weakening and strengthening that 

infl uence for comparison. The results for stealth 
scans indicate that the more influence nodes 
assign to their neighbors’ concern, the greater 
their improvement in sensitivity, without com-
promising specifi city in comparison to BLID sys-
tems operating independently. The fact that 1 
– specificity does not exceed 3.5 percent (in the 
worst case) comes from two reasons: 
• Precise calibration of the rate limiting sensitiv-

ity thresholds. For example, the consensus of 
level of concerns of neighbors cannot reduce 
the sensitivity threshold of a chosen node 
below some pre-calibrated minimal value.

• The level of concern of a node signals the 
anomaly, while the decision about the 
assigning particular flows to legitimate or 
malicious classes remains with the DU.

As with the sensitivity improvements, the overall 
information gain of DIAMoND calculated over 
the accuracy of BLID increases as participating 
nodes increase the influence of the input from 
their neighbors (approximately twice as large for 
moderate and strong as for weak; Table 1). 

In the evaluated attack scenarios, we observe 
no major distinction in the detection accuracy 
and information gain regardless of the neighbor-
hood strategies (Table 1).

Finally, our results show less significant 
improvement in sensitivity of our system over 
BLID systems operating independently for 
DDoS attacks: between 1.6 and 4.5 percent (Fig. 
4 and Table 1). We also observe that the infor-
mation gain of the overlay detection system is 
lower (although always positive) in comparison 
with low-rate malicious activity, but the system 
can react close to the source of the attack more 
effectively and thereby reduce the collateral 
damage to a minimum.

mInImAl And mArgInAl deployment gAIn

Deployment of networked services across admin-
istrative boundaries usually has to take place 
progressively. In this section, we try to under-
stand the minimal deployment percentage 

Table 1. Sensitivity, 1 – specifi city, accuracy of BLID and DIAMoND, and the accuracy gain of DIA-
MoND over BLID. Performance at low TTL demonstrates signifi cant benefi t without increased com-
munication overhead costs associated with higher TTLs.

Sensitivity 1 – specifi city Accuracy

BLID DIAMoND BLID DIAMoND BLID DIAMoND Gain 

Stealth scan, TTL = 1 neighborhood

0.58 (±0.02) 0.8 (±0.015) 6.2e–4 (±1,5e–4) 0.017 (±0.003) 0.889 0.935 0.047

Stealth scan, TTL = 2 neighborhood

0.557 (±0.021) 0.787 (±0.021) 7.5e–4 (±5.2e–4) 0.019 (±0.003) 0.889 0.932 0.045

Stealth scan, TTL = 3 neighborhood

0.568 (±0.029) 0.793 (±0.029) 6.1e–4(±1.7e–4) 0.02 (±0.003) 0.887 0.932 0.045

Stealth scan, attack correlation neighborhood

0.528 (±0.027) 0.752 (±0.027) 5.55e–4 (±1.3e–4) 0.02 (±0.003) 0.891 0.931 0.041

DDoS attack, TTL = 1 neighborhood

0.923 (±0.012) 0.962 (±0.01) 0.005 (±7.3e–4) 0.032 (±0.004) 0.95 0.964 0.014

Sensitivity measures the 

proportion of malicious 

packets that are correct-

ly identifi ed as such, 

specifi city measures the 

proportion of legitimate 

packets that are correct-

ly identifi ed as such, 

whereas accuracy mea-

sures the proportion 

of correctly identifi ed 

malicious and legitimate 

to all the packets.
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needed for DIAMoND to have significant per-
formance impact and marginal performance gain 
with additional deployment. 

To quantitatively evaluate deployment gain, 
we adapt a calculation of “offline marginal util-
ity,” originally proposed to analyze the impact 
of additional metrics, to instead compute the 
incremental information gain for each additional 
node (relative to the information achieved with 
BLID). We refer the reader to some relevant 
literature for more details [11].

Figure 5 provides an example analysis of the 
deployment gain for a 20-node network under 
network-wide port scan probing. This figure 
shows a point of diminishing return such that, 
after 30 percent of the nodes participate in DIA-
MoND, the information gain is close to that 
achieved when all nodes are participating, and 
the marginal deployment gain from increasing 
participation is insignificant. On the other side, 
even when there are only 10 percent nodes par-
ticipating, the information gain is already over 
0.01. When 20 percent nodes are participating, 
the information gain reached a significant 0.03. 
We thus concluded that, in this case:
• Minimal effective deployment is 10 percent 

of the network nodes participating.
• Marginal gain is maximized at 20 percent 

deployment.
DIAMoND plateaus after 30 percent deploy-
ment, with minimal value gained by having addi-
tional nodes participating.

As our immediate next step we plan to explore 
the scalability of DIAMoND coordination proto-
col, and apply it to a broad set of deployment 
scenarios and real-network topologies.

conclusIons
In this article we investigate the potential for a 
self-organizing, nonparametric distributed coor-
dination framework inspired by those observed 
naturally in colonies of honey bees to provide 
dynamic individual detection thresholds for 
anomalous event pattern detection on networks. 

To illustrate its application, we couple DIA-
MoND with local anomaly detection schemes for 
network-wide stealthy port scan and SYN-flood-
ing-based DDoS and evaluate its performance on 
an emulation testbed. DIAMoND demonstrated 
up to 20 percent enhancement in sensitivity with-
out sacrificing specificity. In this article, we also 
systematically investigate several automated coor-
dination neighborhood construction strategies and 
find that DIAMoND exhibits stable performance 
gain over different neighborhood strategies. This 
leads us to conclude that DIAMoND is robust 
to neighborhood size. Deployment impact shows 
that DIAMoND quickly reaches an information 
gain plateau after 30 percent of network nodes 
participate in coordination, which enhances the 
deployability of DIAMoND. It allows multiple 
entities, which may be functionally and/or legally 
prohibited from sharing cyber data, to leverage 
each other’s insight and increase their effective-
ness in cyber defense. Furthermore, DIAMoND 
enables real-time adaptation, eliminating the 
identification-designed-response delay inherent 
in defenses that react to known and predefined 
threats, and allowing active defense for emerging 
novel network attacks.
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