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Abstract—In this paper, we consider the problem of detecting
Skype traffic and classifying Skype service flows such as voice
calls, skypeOut, video conferencing, chat, file upload and down-
load. We propose a classification method for Skype encrypted
traffic based on the Statistical Protocol IDentification (SPID)
that analyzes statistical values of some traffic attributes. We
have evaluated our method on a representative dataset to show
excellent performance in terms of Precision and Recall.

I. INTRODUCTION

Accurate traffic identification and classification are essential

for proper network configuration and security monitoring.

Application-layer encryption can however bypass restrictions

set by network configuration and security checks. In this paper,

we focus on Skype as an interesting example of encrypted

traffic and provide a method for identifying different Skype

flows inside encrypted TCP traffic—we want to discriminate

between voice calls, video conferencing, skypeOut calls, chat,

and file sharing. Previous papers on Skype concentrated on

its architecture and the authentication phase [1], [2], [3],

on the mechanisms for firewall and NAT traversal [4] as

well as on characterizing traffic streams generated by VoIP

calls and Skype signaling [5], [6]. Bonfiglio et al. proposed

identification methods for encrypted UDP Skype traffic [7],

but no work has considered encrypted TCP Skype flows.

Skype exemplifies the problem of identifying encrypted

flows, because it multiplexes several services using the same

ports: VoIP calls, video conferencing, instant messaging, or file

transfer. A network administrator may assign a higher priority

to VoIP calls, but other flows may also benefit in an illegitimate

way from a higher priority if we cannot distinguish them from

VoIP calls.

We propose a classification method for Skype encrypted

traffic based on the Statistical Protocol IDentification (SPID)

[8] that analyzes statistical values of flow and application layer

data. We consider a very special case of Skype traffic that is,

in addition to proprietary encryption, tunneled over Transport

Layer Security (TLS) protocol version 1.0. We propose an

appropriate set of attribute meters to detect encrypted Skype

TCP traffic and identify Skype service flows. Our method

involves three phases with progressive identification. To select

the right attribute meters for each phase, we applied a method

called forward selection [9] that evaluates how a given attribute

meter improves classification performance and promotes it

to the traffic model if its influence is significant. Forward

selection uses the Analysis of Variance (ANOVA) [10]. We

have evaluated our classification method on a representative

dataset to show excellent performance in terms of Precision

and Recall.

To the best of our knowledge, this is the first work that

proposes an accurate method for classifying encrypted Skype

service TCP flows tunneled over the TLS protocol.

II. ISSUES IN THE ANALYSIS OF SKYPE TRAFFIC

Skype traffic presents a major challenge for detection and

classification, because of proprietary software, several internal

obfuscation mechanisms, and a complex connection protocol

designed for bypassing firewalls and establishing communica-

tion regardless of network policies.

Skype differs from other VoIP applications, because it relies

on a Peer-to-Peer (P2P) infrastructure while other applications

use the traditional client-server model. Skype nodes include

clients (ordinary nodes), supernodes, and servers for updates

and authentication. An ordinary node with a public IP ad-

dress, sufficient computing resources and network bandwidth

may become a supernode. Supernodes maintain an overlay

network, while ordinary nodes establish connections with a

small number of supernodes. Authentication servers store the

user account information. A Skype client communicates with

other nodes directly or in an indirect way via other peers that

relay packets. Skype can multiplex different service flows on

an established connection: voice calls to another Skype node,

skypeOut calls to phones, video conferencing, chat, file upload

and download. Our goal is to detect and classify the service

flows in Skype traffic. We cannot use traditional port-based

flow identification methods, because Skype randomly selects

ports and switches to port 80 (HTTP) or 443 (TLS 1.0) if it

fails to establish a connection on chosen ports.

Another feature of the Skype design is the possibility of

using both TCP and UDP as a transport protocol. Skype

uses TCP to establish an initial connection and then it can

interchangeably use TCP or UDP depending on network

restrictions.

Skype encrypts its traffic with the strong 256-bit Advanced

Encryption Standard (AES) algorithm to protect from poten-

tial eavesdropping. However, some information in the UDP

payload is not encrypted so that a part of the Skype messages

encapsulated in UDP can be obtained and used for identifi-

cation [7]. We propose an accurate method for classification

of service flows inside encrypted TCP Skype traffic tunneled





Table I
DEFINITION OF ATTRIBUTE METERS USED IN CLASSIFICATION

Attribute meter Definition

byte-frequency M1 : {(k, pk)}, k = 0, 1, ..., 255; pk = mk∑
mk

, mk =
∑8

i=1

∑100
j=1 δxi

j

action-reaction of first 3 bytes M2 : {(hi, phi ), ∀i∈(1,3)}, h : (yi3∆, zi3∆) → h(yi3∆, zi3∆), phi =
m

hi∑
m

hi
, mhi = δh(yi

3∆
,zi

3∆
)

byte value offset hash M3 : {(h, ph)}, h : (j, xi
j) → h(j, xi

j), ph = mh∑
mh

, mh =
∑4

i=1

∑32
j=1 δh(j,xi

j
)

first 4 packets byte reoccurring dis-
tance with byte

M4 : {(h, ph)}, ∀d<=16 : h : (xi
j , d) → h(xi

j , d), ph = mh∑
mh

, mh =
∑4

i=1

∑32
j=1 δh(xi

j
,d))

first 4 packets first 16 byte pairs M5 : {(h, ph)}, h : (xi
j , x

i
j+1) → h(xi

j , x
i
j+1), ph = mh∑

mh
, mh =

∑4
i=1

∑16
j=1 δh(xi

j
,xi

j+1
)

first 4 ordered direction packet size M6 : {(f, pf )}, f : (i, s(xi), dir(xi)) → f(i, s(xi), dir(xi)), pf =
mf∑
mf

,

mf =
∑4

i=1 δf(i,s(xi),dir(xi))

first packet per direction first N
byte nibbles

M7 : {(f, pf )}, ∀x1∈{z1,y1} : f : (nib(x1
j ), j, dir(x

1)) → f(nib(x1
j ), j, dir(x

1)), pf =
mf∑
mf

,

mf =
∑8

j=1 δf(nib(x1
j
),j,dir(x1))

direction packet size distribution M8 : {(f, pf )}, f : (s(xi), dir(xi)) → f(s(xi), dir(xi)), pf =
mf∑
mf

,

mf =
∑s(x)

i=1 δf(s(xi),dir(xi))

byte pairs reoccurring count M9 : {(f, pf )}, ∀
xi
j
=x

i+1
j

: f : (xi
j , dir(x

i
j), dir(x

i+1
j )) → f(xi

j , dir(x
i
j), dir(x

i+1
j )), pf =

mf∑
mf

,

mf =
∑s(x)

i=1

∑32
j=1 δf(xi

j
,dir(xi

j
),dir(xi+1

j
))

We consider a set of n attribute meters x1, ..., xn ∈ X
and a set of m Skype services. We begin with a model that

includes the most significant attribute in the initial analysis.

More precisely, we compute F -Measure defined as:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
,

F -Measure =
2 ∗ Precision ∗Recall

Precision+Recall
, (2)

for a particular Skype service and for each individual attribute

meter. The True Positive (TP) term refers to all Skype flows

that are correctly identified, False Positives (FPs) refer to all

flows that were incorrectly identified as Skype traffic. Finally,

False Negatives (FNs) represent all flows of Skype traffic that

were incorrectly identified as other traffic.

We select attribute xi ∈ X with the largest average

F -Measure defined as maxx∈X
1
m

∑
a∈(1,m) FMx

a , where

FMx
a denotes ath observation of F -Measure value corre-

sponding to xth attribute meter.

In the next step, each of the remaining attributes

x1, ...xi−1, xi+1, ...xn ∈ X is tested for inclusion in the

model. We run several F -tests (explained below) that compare

the variance of F -Measure values obtained in the preliminary

selection, i.e. FMxi
a , where a ∈ (1,m), with the corre-

sponding values obtained after including each attribute meter

separately.

Table II
NOTATION

M : {(k, pk)} – attribute meter
mk – attribute meter counter
pk, k = 0, 1, 2, ... – probability distribution of an attribute meter (corresponds
to Q(x) in traffic model generation and P (x) in traffic classification)

δ – indicator function; δ : X → {0, 1}, δxi
j
=

{

1 if X = xi
j

0 if X 6= xi
j

h – hash function, h = 0, 1, 2, ...
f – compressing function, f = 0, 1, 2, ...
xi
j – byte j in packet i

xi
j(m)

– bit m in byte j in packet i
∑

i x
i ↔ x – all packets in a TCP session

yi – packet i, zi – packet sent in a different direction than yi

xi
∆j – first j bytes in packet i

d – distance between two identical bytes; if xi
j = xi

j−d
⇒ d, 0 < d < j

s(x) – size of x; amount of packets in a TCP session

s(xi) – size of packet xi in bytes
dir – packet direction

nib: xi
j ↔ xi

j(m∈(1...8))
; xi

j(m∈(1...4))
XOR xi

j(m∈(5...8)
⇒ nib(xi

j)

Let us focus on a particular F -test [10] that compares the

influence of attribute meter xj ∈ x1, ...xi−1, xi+1, ...xn ∈ X
with the first model based on xi ∈ X . We examine two groups

of F -Measure values FMxi
a and FM

xij
a that respectively

correspond to attribute xi and to the set of two attribute

meters, i.e. xi and xj . We test the null hypothesis that two

means of the discussed population are equal. If we fail to

reject it, the additional attribute meter does not improve the



classification performance and we need to exclude it from

further consideration. To examine these two groups, we use

the one-way Analysis of Variance (ANOVA) F -test [10] that

compares the variance between the groups to the variance

within the groups. The between–groups variance is given by:

Sbet = m ∗

∑

x

(FM
x
− FM)2

(k − 1)
, (3)

where FM
x

denotes the mean of FMx
a values, FM denotes

the overall mean of F -Measure observations, i.e. FMxi
a and

FM
xij
a , m is the number of F -Measure values for Skype

services and k is the number of groups (in the discussed case

equal to 2). The within–group variance is given by:

Swit =
∑

x,a

(FMx
a − FM

x
)2

k ∗ (m− 1)
, (4)

where FMx
a denotes ath observation corresponding to each

xth classification (in the discussed case to the classification

based on xi and the classification based on the set of two

attributes xi and xj).

The F -statistics is computed as F = Sbet/Swit and it

follows the F -distribution with k − 1, k ∗ (m − 1) degrees

of freedom under the null hypothesis. If the null hypothesis is

rejected and the average F -Measure value corresponding to

xi is lower than F -Measure related to the set of two attribute

meters, i.e. xi and xj , then attribute xj is considered as a

candidate to be included in the model.

For each of the attribute meters, the method computes

F -statistics that reflects the contribution of attributes to

the model. The most significant attribute is added to the

model, if F -statistics is above a predefined level set to 0.1.

Moreover, if F -statistics is above 1, it is included in the

model and considered as a significant attribute meter. The

forward selection method then computes F -statistics again

for the attribute meters still remaining outside the model and

the evaluation process repeats. Therefore, attributes are added

one by one to the model until no remaining attribute results

in significant F -statistics.

IV. EVALUATION RESULTS

A. Dataset Description

The appropriate selection of packet traces containing ground

truth information is one of the key aspects in the training and

evaluation process. It should be as extensive as possible and

should cover various environments. We have generated TCP

Skype traffic in the following conditions: i) various operating

systems: Linux, MacOS, Windows, ii) wireless and wired

networks, iii) connections within one LAN as well as WAN

connections between LANs located in France and Poland, and

iv) different versions of Skype (2, 3, and 5). Overall, we

gathered 479 Skype flow traces taking more than 770 MB.

For the traffic model generation purpose we have selected a

group of traces generated by MacOS over a WAN connection

between wireless LANs located in France and Poland. Our

fingerprint database with 6 Skype service flow models has

the size of 1.78MB in the XML format. We have used the

remaining datasets to evaluate the classification mechanism.

Furthermore, we have gathered a separate set of traces

without Skype traffic to test the discrimination of our method.

It contains various types of traffic: SSL/TLS, SSH, HTTP, SCP,

SFTP, VoIP, BitTorrent, and standard services like streaming,

video conferencing, chat service, mail, file sharing. The traces

contain 18945 flows of around 3GB and were gathered be-

tween December 2010 and March 2011.

B. Criteria of Classification Performance

We use three metrics to quantify the performance of clas-

sification: Precision, Recall, and F -Measure (cf. Eq. 2).

F -Measure is an evenly weighted combination between

Precision and Recall, which means that if the system can for

instance identify skypeOut traffic with Precision 100% (no

False Positives) and Recall is 96.6% then the F -Measure is

98.2%.

C. Performance of Classification

To evaluate the proposed method, we have extended the

version 0.4.6 of SPID [12].

Our method depends on three parameters: the amount of

packets required for reliable traffic and flow identification

during each of the three steps, the K-L divergence threshold,

and the number of flows used in the training process. Due

to the space limitation in this paper, we only present the

final classification results after the calibration process: the

number of packets in each phase is set to 5, 450, and 760

packets, respectively, the K-L divergence threshold of 1.9 and

15 training flows.

After each classification step, the classifier decides if there

are any instances of Skype flow for further analysis. If the

identification result is positive, then it continues with more

detailed classification of TLS Skype flows with a different set

of attribute meters. Otherwise, it finishes as no TLS Skype

flows were recognized.

The objective of the first classification phase is to early

detect encrypted Skype traffic tunneled in TLS connections.

The most significant attribute meter chosen in the selection

process is M5 (cf. Table I). Two other important attributes are

M7 and M6 while M3, M4, and M1 are less meaningful. In

addition to payload inspection attributes (M5, M7, M3, M4,

and M1), we have chosen one typical flow based attribute

that combines features like size, direction, and packet order

number (M6). Such selection indicates that the first TLS

packets contain some characteristic values that differ from the

headers of other services that use TLS.

Table III
PERFORMANCE OF PHASE 1, EARLY RECOGNITION OF SKYPE TRAFFIC

Traffic Precision % Recall % F-M. %

Skype 100 100 100

No Skype 100 100 100

Our experiments show that inspecting only the first five

packets containing the payload is sufficient to reveal Skype

traffic with F-Measure equal to 100% (cf. Table III).



Once the method detects Skype traffic, it classifies the

underlying type of service, i.e. voice/video communication,

skypeOut calls, chat, file sharing. In the second phase, the

method uses another set of attribute meters (M8 as the most

important, M7 as a significant one, and M9, M2, and M5 as

additional ones). The selected set of attributes is composed of

payload independent direction packet size distribution attribute

meter (M8) with DPI attributes (M7, M9, M2, and M5).

Table IV
PERFORMANCE OF PHASE 2, CLASSIFICATION OF SKYPE FLOWS

Skype Service Precision % Recall % F-M. %

voice/video 99.1 95.7 97.4

skypeOut 100 96.6 98.2

chat 86.4 100 92.7

file sharing 100 98.6 99.3

Table IV shows very good results of classification after

inspecting 450 packets. However, this phase cannot distinguish

between voice communications and voice/video calls, nor

between file upload and download (denoted in Table IV as

file sharing) due to similar traffic characteristics. Neverthe-

less, from the Quality of Service (QoS) perspective, network

administrators may already give priority to Skype voice/video

traffic and limit Skype file sharing flows regardless of the

traffic direction.

Table V
PERFORMANCE OF PHASE 3, DETAILED CLASSIFICATION OF SKYPE

FLOWS

Skype Service Precision % Recall % F–M. %

voice 72.9 57.4 64.2

video 60.3 73.2 66.1

skypeOut 100 96.6 98.2

chat 90.2 97.4 93.7

file upload 100 96.9 98.4

file download 100 97.5 98.7

The objective of Phase 3 is to further refine the classification

of voice and video flows as well as file sharing. We have

applied M8 as the most important flow based attribute meter

and DPI based M7 as an additional one. Table V presents

the final results obtained after analyzing 760 packets. We can

observe that the results are very good for most of Skype

flows. We can now easily distinguish between file upload and

download based on the flow attribute combining the direction

with the packet size distribution (cf. attribute M8 in Table

I). The classification is based on the fact that the sizes of

packets sent from the client significantly differs from the sizes

of packets sent in the opposite direction.

Classification of voice and video flows performs slightly

worse, because our method does not capture some character-

istics of the Skype behavior (it is meant to be applied to other

classification problems as well). We have observed that in the

case of Skype calls (both voice and video), the Skype client

sends traffic simultaneously through several nodes depending

on network conditions. In other words, the Skype voice or

video traffic may spread on several TCP connections, which

we cannot capture, because our method considers each TCP

flow separately.

In contrast to voice/video communication and file sharing,

we have noticed that chat messages and skypeOut calls seem

to be sent through a single node. Considering chat messages,

we have observed that when an intermediary node goes

down, communication switches to another one without any

interference for the users. This is not surprising if we take into

account a small amount of data to send. For skypeOut calls,

however, we have observed that the whole communication

goes through a single intermediary node and the range of relay

addresses is limited. This may come from higher requirements

for bandwidth and computing resources to support high quality

of calls. To sum up, in this classification step it was easier to

identify these two type of services, because the whole traffic

was sent over single flows.

V. CONCLUSIONS

In this paper, we have considered the problem of detecting

encrypted Skype traffic tunneled over TLS and classifying

Skype service flows. Our three-phase hybrid classification

method is based on SPID and combines traditional statistical

flow features with DPI elements. In each phase, we select a

subset of relevant attribute meters through forward selection

based on ANOVA. The performance of the method on a

representative dataset is very promising—it achieves high

Precision and Recall for most Skype service flows, whereas

distinguishing between voice and video flows in the final

classification phase is more challenging due to spreading traffic

on several TCP connections.
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