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Je tiens à exprimer mes sincères remerciements aux administrateurs du réseau et des
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humaines pour avoir navigué à travers les complexités de la bureaucratie française, leur
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Abstract

The Domain Name System (DNS) protocol maps easy-to-remember domain names to
their computer-friendly numeric labels, assigned to each Internet-connected device that
uses the Internet Protocol. DNS is the most critical and largely unheralded protocol,
in the absence of which Internet users would need to memorize IP addresses of all the
Internet applications, including banking sites, emails, or social media.

In the early days of the Internet, as highlighted by Dr. Paul Vixie, scientists invested
all their efforts in facilitating communications because they believed that “something
like the Internet could become humanity’s collective digital nervous system.” When
the DNS principles and specifications were designed nearly four decades ago, security
consideration was not an issue because the Internet was a network of trusted users.
Danny Hillis, an American inventor and scientist, when registering the third domain
name on the Internet thought that he should register a few more just in case, but he
felt that “it wouldn’t be nice.” This example illustrates the trust within the community;
the trust that was also built into the protocols of the Internet, including DNS.

Today’s Internet is not only “humanity’s collective digital nervous system” but also
a place where cybercriminals exploit technical vulnerabilities and human weaknesses
for financial gain. Spammers, phishers, malware creators, speculators, or organized e-
crime groups widely abuse the DNS protocol and domain names. DNS has become as
critical for them to operate as it is for regular users.

Preventing registration of malicious domains is challenging because it requires as-
sessing the (bad) intentions of domain owners. Prompt removal of domain names di-
rectly involved in e-crime requires collecting evidence or verifying evidence provided
by trusted notifiers of malicious activity. DNS and hosting providers do not have the
financial incentives to effectively confront domain name abuse.

The DNS infrastructure itself remains vulnerable to attacks due to not restrictive
enough assumptions about cybercriminals and the threat model when designing pro-
tocols in the early days of the Internet. Newly discovered vulnerabilities inherent to
the DNS design drive the development and deployment of new extensions to the DNS
protocol. However, their uptake has been very slow. It has become less of a technology
issue than an economic incentive problem, i.e., whether implementing such security
technologies can be profitable for the operators deploying them.

The distributed nature and architecture of the DNS protocol also allow for increased
Internet security and stability. One example in which DNS plays an important role is
in email security protocols: the Sender Policy Framework (SPF) and the Domain-based
Message Authentication, Reporting, and Conformance (DMARC). While the Simple
Mail Transfer Protocol (SMTP), designed for email distribution, is inherently insecure,
SPF and DMARC providing a set of rules stored in the ‘TXT’ records of DNS resources
can eliminate the problem of domain spoofing. Cybercriminals also abuse the DNS pro-
tocol architecture and its features to enhance the resilience of malicious infrastructures,
amplify attacks, and avoid detection. Just mention Automatically Generated Domains
(AGD) combined with fast-flux networks or Distributed Reflective Denial-of-Service
(DRDoS) attacks that leverage open DNS resolvers.

Motivated by the problems of DNS security and domain name abuse, this disser-
tation has been devoted to DNS security: to make communications more selective and
more difficult for malicious actors so that the “collective digital nervous system” – the
Internet – stays less affected, more secure, and trusted by their benign users. The first
three contributions present DNS measurement studies related to weaknesses inherent



to Internet protocols and domain names that can lead to the exploitation of DNS
infrastructure and domain names. The following three contributions present statisti-
cal and machine learning approaches related to domain name abuse based on traffic
measurements and inferential analysis from DNS-related data.

The first contribution illuminates the problem of non-secure DNS dynamic updates,
which allow a miscreant to manipulate DNS entries in the zone files of authoritative
name servers. We refer to this type of attack as zone poisoning. In its simplest ver-
sion, a malicious actor could replace an existing ‘A’ or ‘MX’ resource record (RR) in
a zone file of an authoritative server and point the domain name to an IP address
under control of an attacker, thus effectively hijacking the domain name. We present
the first measurement study of the vulnerability. Among the vulnerable domains are
governments, health care providers, and banks, demonstrating that the threat impacts
important services. With this study and subsequent notifications to affected parties, we
aim to improve the security of the DNS ecosystem.

Source Address Validation (SAV) is a standard aimed at discarding packets with
spoofed source IP addresses. The absence of SAV for outgoing traffic is a root cause
of DRDoS attacks and received widespread attention. While less obvious, the absence
of inbound filtering enables an attacker to appear as an internal host of a network
and reveals valuable information about the network infrastructure. It may enable other
attack vectors such as DNS cache poisoning. As a second contribution, we present
the results of the Closed Resolver Project that aims at mitigating the problem of
inbound IP spoofing. We perform the first Internet-wide active measurement study to
enumerate networks that do not enforce filtering of incoming packets based on their
source addresses. To achieve this goal, we identify closed and open DNS resolvers that
accept spoofed requests coming from the outside of their network. Our work implies
that the absence of inbound SAV makes DNS resolvers vulnerable to several types of
attacks, including DNS cache poisoning, DNS zone poisoning, NXNSAttack, or zero-day
vulnerabilities in the DNS server software.

Sending forged emails by taking advantage of domain spoofing is a common tech-
nique used by attackers. The lack of appropriate email anti-spoofing schemes or their
misconfiguration lead to successful phishing attacks or spam dissemination. In the third
contribution, we evaluate the coverage of SPF and DMARC deployment in two large-
scale campaigns measuring their global adoption rate and deployment by high-profile
domains. We propose a new algorithm for identifying defensively registered domains
and enumerating the domains with misconfigured SPF rules. We define for the first
time, new threat models involving subdomain spoofing and present a methodology for
preventing domain spoofing, a combination of good practices for managing SPF and
DMARC records and analyzing DNS logs. Our measurement results show that a large
part of the domains do not correctly configure the SPF and DMARC rules, which
enables attackers to deliver forged emails to user inboxes. Finally, we report on remedi-
ation and its effects by presenting the results of notifications sent to Computer Security
Incident Response Teams responsible for affected domains.

To enhance competition and choice in the domain name system, the Internet Corpo-
ration for Assigned Names and Numbers introduced the new generic Top-Level Domain
(gTLD) program, which added hundreds of new gTLDs (e.g. .nyc, .top) to the root DNS
zone. While the program arguably increased the range of domain names available to
consumers, it has also created new opportunities for cybercriminals. To investigate this
issue, in the fourth contribution, we present the first comparative study of abuse in the
domains registered under the new gTLD program and legacy gTLDs (e.g. .com, .org).



We combine historical datasets from various sources, including DNS zone files, WHOIS
records, passive and active DNS and HTTP measurements, and reputable domain name
blacklists to study abuse across gTLDs. We find that the new gTLDs appear to have
diverted abuse from the legacy gTLDs: while the total number of domains abused for
spam remains stable across gTLDs, we observe a growing number of spam domains in
new gTLDs, which suggests a shift from legacy gTLDs to new gTLDs. We also analyze
the relationship between DNS abuse, operator security indicators, and the structural
properties of new gTLDs. The results indicate that there is an inverse correlation be-
tween abuse and stricter registration policies. Our findings suggest that cybercriminals
increasingly prefer to register, rather than hack, domain names and some new gTLDs
have become a magnet for malicious actors. As the presented state of the art in gTLD
abuse is in clear need of improvement, we have developed cases for modifying the ex-
isting safeguards and proposed new ones. ICANN is currently using these results to
review the existing anti-abuse safeguards, evaluate their joint effects, and introduce
more effective safeguards before an upcoming new gTLD rollout.

Malicious actors abuse thousands of domain names every day by launching large-
scale attacks such as phishing or malware campaigns. While some domains are solely
registered for malicious purposes, others are benign but get compromised and mis-
used to serve malicious content. Existing methods for their detection can either predict
malicious domains at the time of registration or identify indicators of an ongoing mali-
cious activity conflating maliciously registered and compromised domains into common
blacklists. Since the mitigation actions for these two types domains are different, in
the fifth contribution, we propose COMAR (Classification of Compromised versus Ma-
liciously Registered Domains), an approach to differentiate between compromised and
maliciously registered domains, complementary to previously proposed domain reputa-
tion systems. We start with a thorough analysis of the domain life cycle to determine
the relationship between each step and define its associated features. Based on the anal-
ysis, we define a set of 38 features costly to evade. We evaluate COMAR using phishing
and malware blacklists and show that it can achieve high accuracy (97% accuracy with
a 2.5% false-positive rate) without using any privileged or non-publicly available data,
which makes it suitable for the use by any organization. We plan to deploy COMAR
at two domain registry operators of the European country-code TLDs and set up an
early notification system to facilitate the remediation of blacklisted domains.

In 2016, law enforcement dismantled the infrastructure of the Avalanche bulletproof
hosting service, the largest takedown of a cybercrime operation so far. The malware fam-
ilies supported by Avalanche use Domain Generation Algorithms (DGAs) to generate
random domain names for controlling their botnets. The takedown proactively targeted
these presumably malicious domains, however, as coincidental collisions with legitimate
domains are possible, investigators had first to classify domains to prevent undesirable
harm to website owners and botnet victims. The constraints of this real-world take-
down (proactive decisions without access to malware activity, no bulk patterns, and no
active connections) mean that approaches based on the state of the art cannot be ap-
plied. The problem of classifying thousands of registered DGA domain names therefore
required an extensive, painstaking manual effort by law enforcement investigators. To
significantly reduce this effort without compromising correctness, we develop a model
that automates the classification. Through a synergetic approach, we achieve an accu-
racy of 97.6% with ground truth from the 2017 and 2018 Avalanche takedowns. For
the 2019 takedown, this translates into a reduction of 76.9% in manual investigation
effort. Furthermore, we interpret the model to provide investigators with insights into



how benign and malicious domains differ in behavior, which features and data sources
are the most important, and how the model can be applied according to the practical
requirements of a real-world takedown. Finally, we assisted law enforcement agencies
by applying our approach to the 2019 Avalanche takedown iteration.

It is beyond doubt that selective and secure DNS communication is the basis for a
more secure and stable Internet. Armed with the experience of the early days of the
Internet and technological advances providing several missing security blocks in DNS,
our work contributes to the implementation of security protocols, the identification of
new (old) security problems overlooked by the community, as well as the development
of statistical and machine learning methods to help intermediaries more effectively
mitigate domain name abuse.



Résumé

Le protocole DNS (Domain Name System) associe des noms de domaine faciles à
mémoriser à leurs étiquettes numériques compréhensibles par les machines (adresses
IP), attribuées à chaque appareil connecté à Internet. Le DNS est le protocole le plus
critique et le plus méconnu, en l’absence duquel les utilisateurs d’Internet devraient
mémoriser les adresses IP de toutes les applications, y compris les sites bancaires, les
courriers électroniques ou les médias sociaux.

Aux premiers jours de l’Internet, comme l’a souligné le Dr. Paul Vixie, les scien-
tifiques ont investi tous leurs efforts pour faciliter les communications, car ils pensaient
que “quelque chose comme l’Internet pourrait devenir le système nerveux numérique
collectif de l’humanité.” Lorsque les principes et les spécifications du DNS ont été conçus
il y a près de quarante ans, les considérations de sécurité ne posaient pas de problème,
car l’Internet était un réseau d’utilisateurs de confiance. Danny Hillis, un inventeur et
scientifique américain, lors de l’enregistrement du troisième nom de domaine sur Inter-
net, a pensé qu’il devrait en enregistrer quelques autres au cas où, mais il a jugé que
“ce ne serait pas bien.” Cet exemple illustre la confiance au sein de la communauté,
confiance qui a également été intégrée dans les protocoles de l’Internet, y compris le
DNS.

L’Internet d’aujourd’hui n’est pas seulement “le système nerveux numérique collectif
de l’humanité,” mais aussi un lieu où les cybercriminels exploitent les vulnérabilités
techniques et les faiblesses humaines à des fins lucratives. Les spammeurs, les phishers,
les créateurs de malwares, les spéculateurs ou les groupes organisés de cybercriminalité
abusent largement du protocole DNS et des noms de domaine. Le DNS est devenu aussi
essentiel pour leur fonctionnement que pour celui des utilisateurs ordinaires.

La prévention de l’enregistrement de domaines malveillants est un défi car elle
nécessite d’évaluer les intentions, possiblement mauvaises des propriétaires de domaines.
La suppression rapide des noms de domaine directement impliqués dans la cyber-
criminalité nécessite de recueillir des preuves ou de vérifier les preuves fournies par
des notificateurs de confiance de l’activité malveillante. Les fournisseurs de DNS et
d’hébergement n’ont pas les incitations financières nécessaires pour lutter efficacement
contre les abus de noms de domaine.

L’infrastructure DNS elle-même reste vulnérable aux attaques en raison de pré-
somptions pas assez restrictives concernant les cybercriminels et du modèle de men-
aces lors de la conception des protocoles au début de l’Internet. Les vulnérabilités
nouvellement découvertes qui sont inhérentes à la composition du DNS conduisent au
développement et au déploiement de nouvelles extensions du protocole DNS. Cepen-
dant, leur adoption a été très lente. Il s’agit moins d’un problème technologique que
d’un problème d’incitation économique, à savoir si la mise en œuvre de ces technologies
de sécurité peut être rentable pour les opérateurs qui les déploient.

La nature et l’architecture distribuées du protocole DNS permettent également
de renforcer la sécurité et la stabilité de l’Internet. Un exemple où le DNS joue un
rôle important est celui des protocoles de sécurité du courrier électronique : Sender
Policy Framework (SPF) et Domain-based Message Authentication, Reporting, and
Conformance (DMARC). Alors que le protocole SMTP (Simple Mail Transfer Protocol),
conçu pour la distribution du courrier électronique, est intrinsèquement non sécurisé,
SPF et DMARC, en fournissant un ensemble de règles stockées dans les enregistrements
‘TXT’ des ressources DNS, peuvent éliminer le problème de l’usurpation de domaine.
Cependant, les cybercriminels abusent également de l’architecture du protocole DNS



et de ses caractéristiques pour renforcer la résilience des infrastructures malveillantes,
amplifier les attaques et éviter la détection. Il suffit de mentionner les domaines générés
automatiquement (AGD) combinés aux réseaux à flux rapide ou les attaques par déni
de service réflectif distribué (DRDoS) qui exploitent les résolveurs DNS ouverts.

Motivée par les problèmes de sécurité DNS et d’abus de noms de domaine, ce
mémoire a été consacré à la sécurité DNS : rendre les communications plus difficile-
ment exploitables par les acteurs malveillants afin que le “système nerveux numérique
collectif” – l’Internet – reste moins affecté, plus sûr, et que ses utilisateurs légitimes lui
fassent confiance. Les trois premières contributions présentent des études de mesure du
DNS liées aux faiblesses inhérentes aux protocoles Internet et aux noms de domaine qui
peuvent conduire à l’exploitation de l’infrastructure DNS et des noms de domaine. Les
trois contributions suivantes présentent des approches statistiques et d’apprentissage
automatique liées à l’abus de noms de domaine, basées sur des mesures de trafic et des
analyses déductives à partir de données liées au DNS.

La première contribution met en lumière le problème des mises à jour dynamiques
DNS non sécurisées qui permettent à un mécréant de manipuler les entrées DNS dans les
fichiers de zone des serveurs de noms faisant autorité. Nous appelons ce type d’attaque
“zone poisoning”. Dans sa version la plus simple, un acteur malveillant peut remplacer
un enregistrement de type ‘A’ ou ‘MX’ existant dans un fichier de zone d’un serveur
faisant autorité et associer le nom de domaine à une adresse IP sous le contrôle d’un
attaquant – détournant ainsi effectivement le nom de domaine. Nous présentons la
première étude de mesure de cette vulnérabilité. Parmi les domaines vulnérables figurent
des gouvernements, des hôpitaux et des banques, ce qui montre que la menace touche
des services importants. Avec cette étude et les notifications consécutives aux parties
concernées, nous visons à améliorer la sécurité de l’écosystème DNS.

La validation de l’adresse source (SAV) est un standard visant à rejeter les pa-
quets dont l’adresse IP source est usurpée. L’absence de SAV pour le trafic sortant est
une cause fondamentale des attaques de type DRDoS qui a été étudiée par un grand
nombre de chercheurs. Bien que moins évidente, l’absence de filtrage entrant permet à
un attaquant d’apparâıtre comme un hôte interne d’un réseau et révèle des informa-
tions importantes sur l’infrastructure du réseau. Elle peut permettre d’autres vecteurs
d’attaque tels que l’empoisonnement du cache DNS. Comme deuxième contribution,
nous présentons les résultats du projet Closed Resolver qui vise à atténuer le problème
de l’usurpation d’adresse IP entrante. Nous réalisons la première étude de mesure active
à l’échelle de l’Internet pour énumérer les réseaux qui n’appliquent pas le filtrage des
paquets entrants en fonction de leurs adresses source. Pour atteindre cet objectif, nous
identifions les résolveurs DNS fermés et ouverts qui acceptent les requêtes usurpées
provenant de l’extérieur de leur réseau. Notre travail implique que l’absence de SAV
entrant rend les résolveurs DNS vulnérables à plusieurs types d’attaques, y compris
l’empoisonnement du cache DNS, l’empoisonnement de la zone DNS, l’attaque de type
NXNSAttack, ou des vulnérabilités zero-day dans le logiciel de serveur DNS.

L’envoi de faux e-mails en profitant de l’usurpation de domaine est une technique
courante utilisée par les attaquants. L’absence de mécanismes appropriés de lutte con-
tre l’usurpation d’adresse électronique ou leur mauvaise configuration permettent de
lancer avec succès des attaques de phishing ou de diffusion de spam. Dans la troisième
contribution, nous évaluons le déploiement de SPF et DMARC dans deux campagnes à
grande échelle, en mesurant leur taux d’adoption global et leur déploiement par des do-
maines importants. Nous proposons un nouvel algorithme pour identifier les domaines
enregistrés de manière défensive et recenser les domaines dont les règles SPF sont mal



configurées. Nous définissons pour la première fois de nouveaux modèles de menace im-
pliquant l’usurpation de sous-domaines et présentons une méthodologie pour prévenir
l’usurpation de domaines, une combinaison de bonnes pratiques pour la gestion des en-
registrements SPF et DMARC et l’analyse des journaux DNS. Nos résultats de mesures
montrent qu’une grande partie des domaines ne configure pas correctement les règles
SPF et DMARC, ce qui permet aux attaquants de délivrer de faux e-mails dans les
bôıtes de réception des utilisateurs. Enfin, nous rendons compte de la médiation et de
ses effets en présentant les résultats des notifications envoyées aux équipes de réponse
aux incidents de sécurité informatique responsables des domaines affectés.

Afin de renforcer la concurrence et le choix dans le système des noms de domaine,
ICANN (Internet Corporation for Assigned Names and Numbers) a introduit le nou-
veau programme de domaine générique de premier niveau (gTLD) qui a ajouté des
centaines de nouveaux gTLD (par exemple, .nyc, .top) à la zone DNS racine. Si le
programme a sans doute augmenté la gamme de noms de domaine disponibles pour
les consommateurs, il a également créé de nouvelles opportunités pour les cybercrim-
inels. Pour étudier cette question, nous présentons dans la quatrième contribution la
première étude comparative des abus dans les domaines enregistrés dans le cadre du
nouveau programme gTLD et dans les gTLD traditionnels (par exemple, .com, .org).
Nous combinons des ensembles de données historiques provenant de diverses sources,
notamment des fichiers de zone DNS, des enregistrements WHOIS, des mesures DNS
et HTTP passives et actives, et des listes noires de noms de domaine réputés pour
étudier les abus dans les gTLD. Nous constatons que les nouveaux gTLDs semblent
avoir détourné les abus des gTLDs traditionnels : alors que le nombre de domaines
abusés pour le spam reste stable entre les gTLDs, nous observons un nombre croissant
de domaines de spam dans les nouveaux gTLDs, ce qui suggère un déplacement des
gTLDs traditionnels vers les nouveaux gTLDs. Nous analysons également la relation
entre les abus de DNS, les indicateurs de sécurité des opérateurs et les propriétés struc-
turelles des nouveaux gTLD. Les résultats indiquent qu’il existe une corrélation inverse
entre les abus et les politiques d’enregistrement plus strictes. Nous constatons que les
cybercriminels préfèrent de plus en plus enregistrer les noms de domaine plutôt que
de les pirater et que certains nouveaux gTLD sont devenus un aimant pour les acteurs
malveillants. Comme l’état actuel de la situation en matière d’abus des gTLD a claire-
ment besoin d’être amélioré, nous avons élaboré des cas pour modifier les mesures de
protection existantes et en avons proposé de nouvelles. L’ICANN utilise actuellement
ces résultats pour réviser les mesures de protection anti-abus existantes, évaluer leurs
effets conjoints et introduire des mesures de protection plus efficaces avant le prochain
lancement d’un nouveau gTLD.

Les acteurs malveillants abusent chaque jour des milliers de noms de domaine
en lançant des attaques à grande échelle telles que des campagnes de phishing ou
de logiciels malveillants. Si certains domaines sont enregistrés uniquement à des fins
malveillantes, d’autres sont bénins (légitimes) mais sont compromis et utilisés à mauvais
escient pour servir du contenu malveillant. Les méthodes de détection existantes per-
mettent soit de détecter les domaines malveillants au moment de leur enregistrement,
soit d’identifier les indicateurs d’une activité malveillante en cours, en regroupant
les domaines malveillants enregistrés et compromis dans des listes noires populaires.
Étant donné que les mesures d’atténuation pour ces deux types de domaines sont
différentes, dans la cinquième contribution, nous proposons COMAR (Classification
of Compromised versus Maliciously Registered Domains), une approche permettant de
différencier les domaines compromis et les domaines enregistrés de manière malveil-



lante, en complément des systèmes de réputation de domaines proposés précédemment.
Nous commençons par une analyse approfondie du cycle de vie d’un domaine afin de
déterminer la relation entre chaque étape et de définir les caractéristiques associées.
Nous avons défini un ensemble de 38 propriétés qu’il est difficile de contourner. Nous
évaluons COMAR à l’aide de listes noires d’hameçonnage et de logiciels malveillants et
montrons qu’il peut atteindre une grande précision (97 % de précision avec un taux de
faux positifs de 2,5 %) sans utiliser de données privilégiées ou non publiques, ce qui le
rend utilisable par n’importe quelle organisation. Nous prévoyons de déployer COMAR
chez deux opérateurs de registre de domaines des TLD européens (ccTLD) et de mettre
en place un système de notification pour faciliter la remédiation des domaines figurant
sur la liste noire.

En 2016, les forces de l’ordre ont démantelé Avalanche, l’infrastructure du service
d’hébergement blindé, le plus grand démantèlement d’une opération de cybercriminalité
à ce jour. Les familles de logiciels malveillants soutenues par Avalanche utilisent des
algorithmes de génération de domaines (DGA) pour générer des noms de domaines
aléatoires afin de contrôler leurs botnets. Le démantèlement cible de manière proac-
tive ces domaines présumés malveillants ; toutefois, comme des collisions fortuites avec
des domaines légitimes sont possibles, les investigateurs doivent d’abord classer les do-
maines pour éviter tout préjudice indésirable aux propriétaires de sites Web et aux vic-
times de botnets. Les contraintes de cette opération dans le monde réel (décisions proac-
tives sans accès à l’activité des logiciels malveillants, absence de profils d’enregistrement
en masse et de connexions actives) signifient que les approches basées sur l’état de l’art
ne peuvent être appliquées. Le problème de la classification des milliers de noms de
domaine enregistrés de la DGA a donc nécessité un effort manuel important et minu-
tieux de la part des investigateurs des forces de l’ordre. Pour réduire considérablement
cet effort sans compromettre l’exactitude, nous développons un modèle qui automa-
tise la classification. Grâce à une approche synergique, nous obtenons une précision
de 97,6 % avec la vérité terrain des démantèlements d’Avalanche de 2017 et 2018 ;
pour le démantèlement de 2019, cela se traduit par une réduction de 76,9 % de l’effort
d’enquête manuel. En outre, nous interprétons le modèle pour fournir aux investiga-
teurs un aperçu de la façon dont les domaines bénins et malveillants diffèrent dans
leur comportement, quelles caractéristiques et sources de données sont les plus impor-
tantes, et comment le modèle peut être appliqué en fonction des exigences pratiques
d’un démantèlement dans le monde réel. Enfin, nous avons aidé les forces de l’ordre en
appliquant notre approche à l’itération 2019 du démantèlement Avalanche.

Il ne fait aucun doute que la communication DNS sélective et sécurisée est le trem-
plin vers un Internet plus sûr et plus stable. Sur la base de l’expérience des premiers
jours de l’Internet et des avancées technologiques fournissant plusieurs blocs de sécurité
manquants dans le DNS, nos travaux contribuent à la mise en œuvre de protocoles
de sécurité, à l’identification de nouveaux (et parfois anciens) problèmes de sécurité
négligés par la communauté, ainsi qu’au développement de méthodes statistiques et
d’apprentissage automatique pour aider les intermédiaires à atténuer plus efficacement
les abus de noms de domaine.
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Chapter 1

Introduction

During the 2014 Internet Hall of Fame Acceptance Speech, Dr. Paul Vixie, an Ameri-

can computer scientist who designed and deployed several Domain Name System (DNS)

protocol extensions and applications used throughout the Internet today, said: “I spent

the first half, let’s say fifteen years, of my career trying to make communications easier

because I could tell that something like the Internet could become humanity’s collective

digital nervous system. And I thought that it was a cool thing, I thought that it would

be great. I spent roughly the second half, another fifteen years, trying to make commu-

nication harder, or at least more selective because of all criminals and spammers that

we brought with us when we have created humanity’s collective digital nervous system.

I stand here, as it was mentioned before, on the shoulders of giants (...). When I realized

that success is inevitable, I went around and I said: «How can I thank you guys?» and

they said: «Pay it forward, that’s what we did», so that’s what I’m doing” [1]. This

work was inspired and encouraged by Dr. Paul Vixie and has been devoted to DNS

security, to make communications more selective, more difficult for malicious actors so

that the “collective digital nervous system” – the Internet – stays less affected, more

secure, and trusted by their benign users.

1.1 Domain Name System: Yesterday and Today

The Domain Name System (DNS) protocol maps human-readable, easy to remember

domain names (e.g., societegenerale.fr) to their computer-friendly IP addresses

(e.g., 193.178.154.48) – numerical labels assigned to each device connected to the In-

ternet that uses the Internet Protocol (IP). DNS can be then considered as the phone

book of the Internet. In practice, DNS is the most critical (and largely unheralded) pro-

1



Chapter 1. Introduction

tocol, in the absence of which Internet users would need to memorize IP addresses of

all the Internet applications, including banking sites, emails, or social media. It is mis-

leading to believe that DNS is simple, well understood, or sufficiently well researched.

It is enough to mention that 3,200 pages of various RFC documents related to DNS

have been published by different authors since its inception [2].

1.1.1 Trust Built into the DNS Protocol and Internet Users

In the early days of ARPANET – the precursor of the Internet, the mapping of host-

names to IP addresses was maintained in a single file named HOSTS.TXT and distributed

to all users via the File Transfer Protocol (FTP). The first version of this file was pub-

lished in 1972. At that time, there were no Top-Level domains (TLDs), registries, or

registrars yet. Numbers were assigned by the Internet Assigned Numbers Authority

(IANA), managed at the time by Jon Postel [3]. The Network Information Center

(NIC) maintained and published the HOSTS.TXT file for the rest of the network. It soon

became evident that this solution had one systemic problem – it was not scalable. In

1983, Paul V. Mockapetris [4] proposed principles for dynamic and distributed domain

name systems in RFC 882 [5] and RFC 883 [6] – essentially DNS as it is known today.

Four years later, Mockapetris introduced the details of the DNS protocol implementa-

tion and specification [7, 8], but without security considerations, as the Internet was a

network of trusted users.

Danny Hillis, an American inventor and scientist, to give an idea of the level of

trust in the Internet community in the early days, gave an example of a domain name

he registered at the time. He chose think.com, which was the third registered domain

name on the Internet. He thought there were a lot of interesting domain names, and he

should register a few more just in case, but he felt that “it wouldn’t be nice” [9]. This

example illustrates the trust within the community; the trust that was also built into

the protocols of the Internet, including DNS.

1.1.2 Identifying and Filling the Gaps (Slowly) to Confront E-crime

Today’s Internet is not only “humanity’s collective digital nervous system” but also

a place where cybercriminals exploit technical vulnerabilities and human weaknesses

for financial gain. Spammers, phishers, speculators, bulletproof service providers, or

organized e-crime groups widely abuse the DNS protocol and domain names. DNS has

2
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become as critical for them to operate as it is for regular users. They register thousands

(possibly more) new domain names every day or compromise legitimate websites to

distribute malicious content and launch massive attacks ranging from phishing, botnet,

malware drive-by-download to spam campaigns. Some believe that most new domain

names are maliciously registered.

Preventing registration of malicious domains is challenging because it requires as-

sessing the (bad) intentions of domain owners (registrants). Registrant identity veri-

fication, even if required, is rarely imposed. Some segments of the DNS industry are

aggressively competing and facilitating the creation of new domain names in mere sec-

onds for less than a dollar. Domain owners can use cryptocurrencies to pay registration

fees or automatically register hundreds of domain names in bulk. Some intermediaries

willingly or unwillingly facilitate cybercrime. In 2016, AlpNames Limited, an ICANN-

accredited [10] registrar, supported the option to randomly generate and register up

to 2,000 domains from a selection of 27 new generic TLDs (gTLDs), with registration

prices sometimes under one dollar and using a variety of patterns such as time, cities,

zip codes, or letters [11]. In the second quarter of 2016, Spamhaus blacklisted nearly

40% (1,2 Million) of all domains registered with AlpNames [12].

Prompt removal of domain names directly involved in e-crime is also a challenge.

DNS service and hosting providers need to collect evidence (or verify evidence provided

by trusted notifiers) of malicious activity. They need to assess whether mitigation at the

DNS level is appropriate and whether removing the abused domain (perhaps benign but

compromised) will not cause collateral damage to regular Internet users. Some entities

involved in domain registration and hosting shift the responsibility of combating domain

abuse from one to the other. They claim they do not have enough financial resources

to fight DNS abuse or there are other intermediaries who are better positioned to

mitigate abuse. In fact, they do not have enough incentives and pressure from end

users, their competitors, and regulators to curb domain abuse. Currently, there is no

widely accepted consensus on what DNS abuse is and what types of intermediaries

should respond to address it.

The DNS infrastructure itself also remains vulnerable to attacks mainly (but not

only) because the DNS protocol was designed with no (or little) security considerations.

Newly discovered vulnerabilities in DNS are driving the development and deployment

of new extensions to the DNS protocol. We do not mean flaws in the DNS software
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code, but rather certain weaknesses inherent in its design. They are the result of not

restrictive enough assumptions about cybercriminals and the threat model when de-

signing protocols in the early days of the Internet. One of the classic examples is the

DNS cache poisoning attack discovered by Dan Kaminsky in 2008 [13]. The DNS Se-

curity Extensions (DNSSEC) [14] protocol was proposed to protect users against this

attack and ensure the authenticity and integrity of the results provided by DNS servers.

However, the uptake of these extensions has been very slow [15]. It has become less of a

technology issue than an economic incentive problem, i.e., whether implementing such

security technologies can be profitable for the operators implementing them [16].

Since it is challenging for consumers or regulators to assess the security level of ser-

vices provided by intermediaries, i.e., whether they effectively prevent malicious domain

registrations or the extent to which they deploy security technologies (e.g., DNSSEC),

researchers proposed security reputation metrics [17]. Existing metrics typically assess

how frequently abuse incidents occur (or vulnerabilities are identified) or how timely

incidents are remediated once they have occurred. They enable benchmarking operators

and thus reduce so-called information asymmetry about the security of intermediary

services [17]. Security reputation metrics may be used to govern responsible parties

towards investing in security and help reduce cybercrime, which is as much a technical

issue as a problem of economic incentives.

1.1.3 DNS and Internet Stability and Security

The distributed nature and architecture of the DNS protocol also allows for increased

Internet security and stability. In 2002, there was a massive (for the time) DDoS attack

of unknown origin on nine of the thirteen DNS root servers responsible for the operation

of the DNS and essentially the entire Internet [18]. Internet Software Consortium (ISC)

chairman at the time, Paul Vixie, said that the attack “was only visible to people

who monitor root servers or whose backbones feed root servers” [18] and appeared

to have minimal impact on end users. The root name server infrastructure is highly

resilient and distributed, thus in practice its complete disruption seems unrealistic. The

DNS infrastructure leverages the inherent features of DNS, such as caching or multiple

authoritative name servers for the same zone. Unlike in the early 2000s, most of the

thirteen individual root servers implement load balancing and anycast techniques [19]

and are, in fact, globally distributed server clusters in multiple data centers.
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Another example of where DNS plays a vital role in the security and stability of

the Internet are DDoS Protection Services (DPS) [20], which victims can outsource

remediation of DDoS attacks. Leading cloud-based DPS systems such as Cloudflare,

Akamai, Incapsula, or Verisign redirect network traffic to the DPS infrastructure for

cleaning. Once the traffic is filtered of malicious flows, the benign traffic is sent back to

the customer network. The DNS protocol is often used in a variety of ways to redirect

network traffic to a DPS, for example by replacing the ‘A’ record with an IP address

assigned to the DPS. Alternatively, the DNS zone of a domain can be delegated to a

name server belonging to the DPS [20].

Another example is the Simple Mail Transfer Protocol (SMTP) designed to dis-

tribute emails. SMTP is inherently insecure and provides no support for preventing

email spoofing [21]. Therefore, sending bogus emails by using domain spoofing is a

common technique used by attackers. The solution to the problem, and the first line

of defense, is the Sender Policy Framework (SPF) [22] and the Domain-based Message

Authentication, Reporting and Conformance (DMARC) [23] protocols, which restrict

who can send an email on behalf of a domain and how an email should be processed.

SPF and DMARC provide a set of rules in text form stored in ‘TXT’ records of DNS

resources. Careful configuration of the extensions can completely eliminate the spoofing

problem for a given domain [24,25].

1.1.4 DNS as an Asset for Cybercriminals

Cybercriminals also abuse DNS protocol architecture and its features to enhance the re-

silience of malicious infrastructures, amplify attacks and avoid detection. Just mention

malicious Algorithmically Generated Domains (AGD) used for botnet C&C communi-

cation combined with fast-flux networks [26] or Distributed Reflective Denial-of-Service

(DRDoS) attacks that leverage open DNS resolvers [27]. The basic premise of the latter

is to send relatively small requests to open hosts with a spoofed (modified) source IP

address that reflect much larger responses to the attack victim. The primary cause of

DRDoS attacks is the ability to spoof IP source addresses (network operators’ failure to

implement a standard called Source Address Validation, also known as BCP 38 [28]).

Dr. Paul Vixie observed that: “Nowhere in the basic architecture of the Internet is

there a more hideous flaw than in the lack of enforcement of simple source-address

validation (SAV) by most gateways [29].” The second cause of DRDoS attacks are open
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UDP-based hosts that respond to requests from all clients. Among the most abused pro-

tocols are misconfigured open DNS resolvers that allow unrestricted recursive resolution

to any client on the Internet. In 2013, Jared Mauch presented at the North American

Network Operators’ Group (NANOG) meeting the Open Resolver Project [30]. He un-

covered 34 Million DNS servers that responded to UDP/53 requests – twenty-six years

after introducing the DNS protocol specification in RFCs 1034 and 1035. Despite many

initiatives to mitigate the problem of open resolvers such as Computer Emergency

Response Team (CERT) alerts [31], research indicating the scale and severity of the

problem [27,32], and continued notifications to network operators by ShadowServer or

national CERTs [33], the issue has still not been resolved. According to the recent re-

port of ShadowServer [34], over 6 million distinct IP addresses respond to DNS queries

in some fashion, and almost 2 million unique IP addresses appear to be openly recursive

DNS servers.

It is beyond doubt that selective and secure DNS communication is the gateway

to a more secure and stable Internet. Armed with the experience of the early days of

the Internet and technological advances providing several missing security blocks in

DNS, the number one priority for the community should be implementing security pro-

tocols, incentivizing intermediaries to deploy them, and identifying new (old) security

problems, possibly overlooked by the community. In the next section, we discuss the

importance and impediments to traffic measurements and data analysis in improving

DNS security and thereby increasing barriers to abuse by malicious actors.

1.2 From Traffic Measurements to Data Analysis

Many consider that the birth of Internet traffic measurements as a scientific discipline

came with the Center for Applied Internet Data Analysis (CAIDA) project [35]. Since

its beginning in 1997, DNS has been one of the CAIDA important research activities

[36, 37]. Over the years, measurement and analysis of DNS data have proven essential

for assessing the uptake of security protocols such as DNSSEC [15], identifying abused

or maliciously registered domain names [38,39], or even creating economic incentives by

reducing information asymmetry about the security practices of hosting providers [40],

for example.
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1.2.1 Passive DNS Replication

One important source of DNS intelligence is the passive DNS data. Florian Weimer first

introduced this concept in 2004 [41]. At that time, he described the idea of “passive

DNS replication”, which involves reconstructing a (partial) view of the data available

in the global DNS in a central aggregated database that can be queried. This method

is referred to as “passive” because the monitored DNS queries are triggered by clients

and therefore it does not require active probing of name servers. The data is collected

by sensors located “above” the recursive name server (DNS resolver), meaning that

they replicate DNS communications between the DNS resolver and authoritative name

servers, rather than monitors DNS queries sent by clients to the local resolver (“below”

the recursive resolver). This principle generally assures the privacy of end-users. The

original motivation for developing passive DNS replication was to create a reverse DNS

lookup database that maps IP addresses to corresponding domain names. The DNS

guidelines specified in RFC 1912 [42] require each ‘A’ record to have a corresponding

‘PTR’ (pointer) record that maps IP addresses to domain names. Since in practice this

data is inadequate or incomplete (e.g., in case of shared hosting where hundreds or

even thousands of domain names share the same IP address), passive DNS is a good

alternative data source to provide reverse DNS lookups [40,43,44].

Passive DNS datasets very quickly proved to be very important sources of data for

detecting and mitigating attacks such as botnet Command and Control (C&C) commu-

nication, phishing, trademark infringement, or spam delivery. Let us take the example

of modern botnets. Early malware hard-coded the IP addresses of its C&C servers, so it

was quite easy to blacklist or even take over the corresponding malicious infrastructure.

Therefore, malware has evolved from hard-coding the IP addresses of C&C servers to

dynamically creating domain names and updating the associated IP addresses of proxy

or backend C&C servers. One technique for this dynamic approach is domain flux-

ing, in which domain generation algorithms (DGAs) regularly create hundreds or even

thousands of algorithmically generated domains. Infected machines will then attempt

to contact these domains, ignoring unreachable ones (unregistered or, sometimes, regis-

tered but unpublished in the zone). Such behavior can be detected using passive DNS:

regularly queried unregistered domains trigger an abnormally high number of NXDO-

MAIN (non-existent domain) responses visible in passive DNS. Those algorithmically
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generated domain names can be proactively blocked or even sinkholed by registry op-

erators or registrars, for example. Moreover, the number of queries observed in the

passive DNS can indicate the size of the botnet and the distribution of infected hosts

across networks, even if we may only analyze traffic generated by recursive resolvers

and not by end clients.

Since DNS is one of the key tools in the malicious activities of criminals, sometimes

even subtle traces in DNS logs left behind at some point in time can be used against

them to detect, for example, malicious domains or entire criminal infrastructures. Be-

cause DNS resource records are stored in passive DNS databases with timestamp in-

formation, it is possible to reconstruct the zone view and retrospectively analyze traffic

patterns on a given day. Almost all the benefits of privacy-preserving passive DNS

replication (i.e., no need to actively query DNS servers, discovery of resource records

otherwise unavailable due to closed zone files, ability to analyze query patterns trig-

gered by clients) have been extensively used by the research and operational security

community. However, one aspect of passive DNS data that is often underestimated is

the near real-time nature of the data. The implication is that methods can be devel-

oped to detect intrinsic relationships between DNS resource records or traffic patterns

in near real-time to detect potential security incidents before they occur.

One problem with passive DNS data that we foresee over the next decade is its avail-

ability. On the one hand, there are initiatives like the European Data Sharing Collective

– Security Information Exchange (SIE) Europe.1 The mission of SIE Europe is to make

the European digital economy safer by offering a platform to collect, aggregate, and

share data, without personally identifiable information (PII). SIE Europe participants

who share their data gain access to all other participants’ aggregated passive DNS data

for use in their cybersecurity initiatives. However, one of the obstacles to increasing

the use of passive sensors monitoring DNS traffic worldwide and making them more

accessible to the security research and operations community is the implementation of

open public resolvers as well as DNS privacy solutions: the DNS-over-TLS (DoT) [45],

DNS-over-HTTP (DoH) [46], DNS-over-QUIC (DoQ) [47] protocols, or Oblivious DNS

(ODNS) [48]. Over the past three decades, we have seen a continuous push to move

the access-side DNS (the recursive part of it) away from customer networks toward

large providers that maintain open public resolvers, such as Google, Cisco, or Cloud-

1https://www.sie-europe.net
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flare, which leads to a concentration of DNS queries with a small number of operators

(Google, Clourflare, etc.) managing DNS traffic instead of local resolver operators.

Some ISPs argue that it may lead to a risky monopoly over user DNS data [49]. While

admins of local networks can prevent their customers from using public resolvers by

blocking all DNS traffic leaving the local network on port 53, this becomes difficult

when DNS traffic is sent over the HTTPS or TLS protocols. On the one hand, DoT or

DoH protocols, a priori, increase user privacy and prevent user profiling. On the other

hand, they reduce the visibility of DNS traffic, which is essential for threat detection.

1.2.2 Active DNS Measurements

Passive DNS is not without limitations. If users do not request domain names, they

are requested sporadically, or clients use DNS-over-HTTPS-enabled browsers, domain

names and returned values do not appear in passive DNS. Active DNS measurement is,

therefore, an attractive alternative, especially since the research and operations com-

munity has high-speed DNS scanners such as ZDNS2 available. More importantly, the

technique does not raise privacy concerns. Since 2015, the OpenINTEL [50], an Active

DNS Measurement Project aims to capture daily snapshots of the state of large por-

tions of the global DNS. One of the motivations for developing the platform was the still

limited access to passive DNS datasets. At the time of writing, the measurement plat-

form includes registered domain names of almost all new gTLDs available through the

Centralized Zone Data Service (CZDS) maintained by the Internet Corporation for As-

signed Names and Numbers (ICANN), legacy gTLDs including .com, .net, .org or .biz,

and a few country-code TLDs (ccTLDs) such as .nl, .dk or .at. OpenINTEL performs

forward DNS measurements, for each domain name, with a fixed set of DNS requests

(such as ‘A’, ‘SOA’, ‘NS’ or ‘DS’), as well as reverse DNS measurements. Very much

like historical passive DNS databases, OpenINTEL allows for retrospective analysis of

the DNS state over time. For specific research and security problems, active DNS can

compensate for information derived from passive DNS datasets without degrading the

accuracy of these methods [51]. For example, in general, both active and passive DNS

can give us insight into how a domain’s behavior changes over time (e.g., IP address

changes). However, due to the nature of active DNS, a researcher cannot assess how

popular a domain name was in the past or is today, which can be accomplished using
2https://github.com/zmap/zdns
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passive DNS data.

While OpenINTEL or other similar active DNS measurement projects such as

Project Sonar by Rapid73 or a DNS-based Active Internet Observatory [52] provide

invaluable resources for data analysis, some scientific problems require more tailored,

specific measurements and data collection. Therefore, researchers develop specific ac-

tive DNS measurement methods. They range from ad hoc collection of uncommon DNS

records to sending particular DNS queries to check the behavior of resolvers or author-

itative name servers to, finally, sophisticated measurement configurations involving, for

example, IP or DNS spoofing. They require not only building a dedicated DNS infras-

tructure, but sometimes also developing custom DNS scanners for measurement, data

collection and analysis.

Active (and passive) DNS methods can lead to discovering DNS misconfigurations

or vulnerabilities, measuring the deployment of security technologies, analyzing attack

vectors, or fingerprinting DNS servers. The following section will discuss the registra-

tion (WHOIS) data, which gives a complementary insight into the entities involved in

domain registration and content hosting.

1.2.3 Registration Data

The DNS represents a large ecosystem in which several entities play a role for a domain

name to be registered, secured, and maintained on the Web. In particular, domain

registrars manage the registration of Internet domain names on behalf of their owners

(registrants). Web hosting providers maintain server infrastructure used to host content

related to the domain.

Mapping abused or vulnerable domain names to registrars and hosting providers

that can prevent or mitigate security incidents (or misconfigurations) in the first place

requires access to domain name (and IP) registration data often referred to as WHOIS.

For example, a disproportionate concentration of domain names used for phishing at-

tacks or spam distribution identified at a particular registrar may lead to questions

about its preventive security measures or, in the most extreme cases, may indicate its

criminal nature. Moreover, security researchers and cybercrime investigators consider

the registration information stored in WHOIS to be vital to their efforts to keep In-

ternet users and their organizations safe. On the one hand, analysis of WHOIS data
3https://opendata.rapid7.com/sonar.fdns v2/
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of maliciously registered domains may reveal specific registration patterns, which may

lead to the discovery of other malicious domain names or even entire criminal infras-

tructures. On the other hand, researchers use WHOIS to identify at scale the contact

details of operators of misconfigured DNS servers or abused domain names to inform

them of security problems [53].

For years, however, there have been obstacles preventing security investigators and

researchers from fully harnessing its potential to fight cybercriminals and enhance global

security. The main problems are: collecting registration data, parsing data and its avail-

ability. Collecting registration data (regardless of the communication protocol used) re-

quires large-scale measurements, feasible for companies with large infrastructures that

can avoid blacklisting their IP addresses exceeding query limits used for harvesting

WHOIS data. For the scientific community, there is no easy way to collect such data

at scale.

For over 35 years, WHOIS has been the primary communication protocol for re-

trieving domain name (and IP) registration data (i.e., registrar, administrator, domain

registrant and their contact information, registration and expiration dates, domain

status, and authoritative name servers) [54, 55]. Its main limitation is its text-based,

non-standardized format, resulting in cumbersome parsing to extract data for analysis

(once it is collected). In 2015, the Internet Engineering Task Force (IETF) proposed

the Registration Data Access Protocol (RDAP) [56] to standardize registration data

in a common JSON format that generally does not require an extra parsing step to

extract the information. ICANN has required generic TLD registries and registrars to

implement the RDAP service by August 2019 [57], which undoubtedly has helped in

the uptake of the protocol. However, as ICANN does not have contract authority to

take compliance action against country-code TLD operators, RDAP implementation

among them has been slow [58]. Finally, as recently established, response times to

RDAP queries remain significantly slower than to WHOIS queries [59].

Retrieving registration information became even more problematic with the intro-

duction of the General Data Protection Regulation (GDPR) on May 25, 2018. ICANN

adopted the temporary specification for generic top-level domains (gTLDs) on how to

publish the registration data of individuals [60] that prohibits domain registrars and

registries from storing personal data in the public WHOIS database, in particular, the

contact details of registrants (domain owners) and administrators. In the absence of di-
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rect contact with the registrant, it is recommended to contact the relevant registrar who

has to provide access to registrant contact information in “a reasonable time” [61]. How-

ever, this practice may cause significant delays in fixing vulnerabilities and mitigating

abuse (e.g., a hacked website), and it does not scale. More importantly, security experts

have relied heavily on WHOIS data (e.g., email addresses, zip codes, fake phone num-

bers provided by criminals at the time of registration) to investigate crimes, copyright

infringement claims, track malware distribution, or large-scale phishing attacks. Follow-

ing GDPR and a temporary specification introduced by ICANN, registrant data is now

redacted from the public WHOIS, making it more challenging to identify the domain

owner or patterns of mass malicious domain name registrations automatically. How-

ever, the passing of GDPR and the removal of personal information from the WHOIS

database also directly impacted cybercriminals’ strategies. For example, phishers used

WHOIS information to personalize phishing messages by using registrants’ personal in-

formation found in WHOIS [62]. More importantly, phishers used WHOIS information

to build a list of recipients (registrants), i.e., potential victims of their attacks [62].

While there are obstacles to the collection, parsing, and – as a consequence of

GDPR – lack of registrant data in the public WHOIS, it remains one of the valuable

resources to combat e-crime. However, in more complex security problems requiring

automated approaches, such as detection of maliciously registered domains, security

researchers must collect additional types of data to build statistical or machine learning

models that yield high accuracy to be practical. The next section will cover other types

of data needed to address various DNS security problems.

1.2.4 Other Datasets Related to Domain Names

Several authors proposed techniques for detecting maliciously registered domains, mali-

cious activity on compromised domains, or algorithmically generated domains used for

botnet C&C communication. Building such a system first requires a better understand-

ing of cybercriminals’ and ordinary users’ intentions when registering and maintaining

a domain name. Registrants’ intentions can be captured by several different charac-

teristics obtained using passive or active data collection methods. In addition to the

already discussed passively and actively gathered DNS and WHOIS information, there

are other non-privileged and generally easily accessible datasets directly or indirectly

related to domain names.
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The linguistic (or lexical) features of registered domain names may indicate the in-

tentions of their registrants. Ordinary users may choose meaningful, easier-to-remember

domain names related to the services provided by the domain. Malicious actors prepar-

ing, for example, phishing attacks may choose deceptive names to lure ordinary users

and steal their personal information (e.g., bankofamerica-account.support). For bot-

net C&C panels, domain names are likely to be longer and meaningless to increase the

chance they have not yet been registered.

Once a domain name is registered, its owner prepares the necessary infrastructure

for the offered (legitimate or malicious) service. These steps may include setting up a

web server, deploying a web content management application, or ordering a Transport

Layer Security (TLS) certificate for the domain name to build trust with site visitors.

Regular domain owners typically put effort into creating meaningful content to increase

visitor interest and thus site popularity. This popularity can be captured using pop-

ularity lists such as Alexa4, Cisco Umbrella5, Majestic6, or Tranco7 (freely available).

Although the composition of popularity lists has proven susceptible to manipulation

techniques [63, 64], they can provide more accurate classification results when com-

bined with other domain names (and site) characteristics. Another useful data source

indicating historical changes in site content and popularity is the Wayback Machine8,

a publicly available digital archive of the World Wide Web. It allows the user to “go

back in time” and see how web pages looked in the past. The high number of registered

captures over time may indicate that a given domain is harmless.

Certificate Transparency (CT)9 is an Internet security standard developed by Google

to monitor and audit digital SSL/TLS certificates. This standard has created a public

log system that will ultimately record all certificates issued by trusted CAs, allowing for

effective identification of non-compliant or maliciously issued certificates. Information

from CT logs can provide vital information about the owners and their intentions. Us-

ing a TLS certificate, malicious actors can make their attacks appear more legitimate

(for example, by displaying a green padlock in the browser address bar). Free TLS

certificates do not require their owners to provide any personal information. Therefore,

4https://www.alexa.com/topsites
5https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
6https://majestic.com/reports/majestic-million
7https://tranco-list.eu/
8https://web.archive.org/
9https://certificate.transparency.dev/
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criminals may prefer to choose free TLS certificates over paid ones. On the other hand,

domain owners who value their domain names may choose to deploy paid certificates.

In particular, they may decide to go through the complicated process of issuing Ex-

tended Validation SSL Certificates (EV SSL), which requires strong identity proof of

the owner and thus increases trust in the domain name.

In addition, malicious actors may or may not take the effort to create fully func-

tional websites, depending on the type of abuse. Legitimate websites typically use more

libraries and technologies to build a site, which is not required for malicious domains

to function properly. Such datasets can be collected by web crawlers and are valuable

for building machine learning-based web content features.

To date, however, there is no centralized platform for collecting and compiling

the vast amount of Open Source Intelligence (OSINT) data available to the research

community. Such a platform would help build machine learning methods to combat

domain name-based cybercrime or compare the performance of proposed solutions (e.g.,

phishing detection systems) on standard datasets.

1.3 Organization of the Dissertation and Key Contribu-

tions

Motivated by the problems of DNS security and domain name abuse explained in Sec-

tion 1.1, we present six contributions in this dissertation. The first three contributions

(Chapters 2-4) present DNS measurement studies related to weaknesses inherent to

Internet protocols and domain names that can lead to the exploitation of DNS infras-

tructure and domain names. The following three contributions (Chapters 5-7) present

statistical and machine learning approaches related to domain name abuse based on

traffic measurements and inferential analysis from DNS-related data, as explained in

Section 1.2.

Below, we summarize each contribution, list relevant research articles, industry

presentations, and blog posts to raise awareness about the identified problems and

proposed solutions.
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1.3.1 Chapter 2: “Zone Poisoning: The How and Where of Non-Secure

DNS Dynamic Updates”

The first contribution illuminates the problem of non-secure DNS dynamic updates,

which allow a miscreant to manipulate DNS entries in the zone files of authoritative

name servers. We refer to this type of attack as zone poisoning. This chapter presents

the first measurement study of the vulnerability. We analyze a random sample of 2.9

million domains and the Alexa top 1 million domains, and find that at least 1,877

(0.065%) and 587 (0.062%) of domains are vulnerable, respectively. Among the vulner-

able domains are governments, health care providers and banks, demonstrating that

the threat impacts important services. With this study and subsequent notifications to

affected parties, we aim to improve the security of the DNS ecosystem.

List of Relevant Peer-Reviewed Publications:

1. “Zone Poisoning: The How and Where of Non-Secure DNS Dynamic Updates”,

Maciej Korczyński, Michal Król, and Michel van Eeten, ACM SIGCOMM Internet

Measurement Conference (IMC), pages 271-278, November 2016

2. “Make Notifications Great Again: Learning How to Notify in the Age of Large-

Scale Vulnerability Scanning”, Orcun Cetin, Carlos Ganan, Maciej Korczyński,

and Michel van Eeten, WEIS, 2017

List of Industry Talks:

1. “Internet-wide Measurements for Cybersecurity: The Case of DNS Zone Poison-

ing” (speaker), French Cyber Defence and Strategy Conference organized by the

Cercle National des Armees, France, July 2019

2. “Zone Poisoning and General Data Protection Regulation” (speaker), ICANN 63

meeting, Spain, October 2018

3. “Zone Poisoning: The How and Where of Non-Secure DNS Dynamic Updates

(speaker), DNS-OARC Spring Workshop, Spain, May 2017
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1.3.2 Chapter 3: “The Closed Resolver Project: Measuring the De-

ployment of Source Address Validation of Inbound Traffic”

Source Address Validation (SAV) is a standard aimed at discarding packets with spoofed

source IP addresses. The absence of SAV for outgoing traffic is a root cause of Dis-

tributed Denial-of-Service (DDoS) attacks and received widespread attention. While

less obvious, the absence of inbound filtering enables an attacker to appear as an inter-

nal host of a network and reveals valuable information about the network infrastructure.

It may enable other attack vectors such as DNS cache poisoning or resource exhaustion

attacks like NXNSAttack. In this chapter, we present the results of the Closed Resolver

Project that aims at mitigating the problem of inbound IP spoofing. We perform the

first Internet-wide active measurement study to enumerate networks that enforce (or

not) filtering of incoming packets based on their source addresses, for both the IPv4

and IPv6 address spaces. To achieve this goal, we identify closed and open DNS re-

solvers that accept spoofed requests coming from the outside of their network. The

proposed method provides the most complete picture of inbound SAV deployment by

network providers. Our scans reveal that 48.9% IPv4 and 26% IPv6 of globally routable

Autonomous Systems (AS) suffer from consistent or partial absence of inbound SAV.

By identifying dual-stacked DNS resolvers, we additionally show that inbound filtering

is less often deployed for IPv6 than for IPv4. Furthermore, we uncover approximately

2.5 M IPv4 and 100 K IPv6 closed resolvers that are not detectable by existing method-

ologies. Despite being closed, our work implies that the absence of inbound SAV makes

these resolvers vulnerable to several types of attack, including NXNSAttack and zero-

day vulnerabilities in the DNS server software.

List of Relevant Peer-Reviewed Publications:

1. “Don’t Forget to Lock the Front Door! Inferring the Deployment of Source Ad-

dress Validation of Inbound Traffic”, Maciej Korczyński, Yevheniya Nosyk, Qasim

Lone, Marcin Skwarek, Baptiste Jonglez, and Andrzej Duda, Passive and Active

Measurement Conference (PAM), March 2020

2. “Inferring the Deployment of Inbound Source Address Validation Using DNS

Resolvers”, Maciej Korczyński, Yevheniya Nosyk, Qasim Lone, Marcin Skwarek,

Baptiste Jonglez, Andrzej Duda, ACM/IRTF Applied Networking Research Work-
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shop (ANRW 2020), Spain, 2020

3. “The Closed Resolver Project: Measuring the Deployment of Inbound Source

Address Validation” Yevheniya Nosyk, Maciej Korczyński, Qasim Lone, Marcin

Skwarek, Baptiste Jonglez, Andrzej Duda, submitted for publication

List of Industry Talks:
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Notifications” (speaker), FIRST Symposium Latin America and Caribbean, Vir-

tual, October 2021

2. “Closed Resolver Project: Measuring the Deployment of Source Address Valida-

tion of Inbound Traffic” (speaker), International Forum of Cybersecurity (FIC),

France, September 2021

3. “Inferring the Deployment of Inbound Source Address Validation Using DNS Re-

solvers” (speaker), Rezopole, Internet eXchange Points (IXP) workshop, France,

November 2020

List of Blog Posts:

1. “Are You Filtering for Inbound Spoofed Packets? Chances Are You’re Not”, Ma-

ciej Korczyński, Yevheniya Nosyk, Qasim Lone, Marcin Skwarek, Baptiste Jon-

glez and Andrzej Duda, Asia Pacific Network Information Centre (APNIC) Blog,

available at: https://blog.apnic.net/2020/10/05/are-you-filtering-for-

inbound-spoofed-packets-chances-are-youre-not

2. “Inferring the Deployment of Inbound Source Address Validation Using DNS

Resolvers”, Yevheniya Nosyk, Maciej Korczyński, Qasim Lone, Marcin Skwarek,

Baptiste Jonglez, Andrzej Duda, RIPE Network Coordination Centre Blog, avail-

able at: https://labs.ripe.net/author/yevheniya nosyk/inferring-the-

deployment-of-inbound-source-address-validation-using-dns-resolvers/

1.3.3 Chapter 4: “Adoption of Email Anti-Spoofing Schemes: Large

Scale Analysis”

Sending forged emails by taking advantage of domain spoofing is a common technique

used by attackers. The lack of appropriate email anti-spoofing schemes or their miscon-
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figuration lead to successful phishing attacks or spam dissemination. In this chapter,

we evaluate the extent of the SPF and DMARC10 deployment in two large-scale cam-

paigns measuring their global adoption rate with a scan of 236 million domains and

high-profile domains of 139 countries. We propose a new algorithm for identifying defen-

sively registered domains and enumerating the domains with misconfigured SPF rules

by emulating the SPF check function. We define for the first time new threat mod-

els involving subdomain spoofing and present a methodology for preventing domain

spoofing, a combination of good practices for managing SPF and DMARC records and

analyzing DNS logs. Our measurement results show that a large part of the domains

do not correctly configure the SPF and DMARC rules, which enables attackers to suc-

cessfully deliver forged emails to user inboxes. Finally, we report on remediation and its

effects by presenting the results of notifications sent to CSIRTs responsible for affected

domains in two separate campaigns.

List of Relevant Peer-Reviewed Publications:

1. “Adoption of Email Anti-Spoofing Schemes: A Large Scale Analysis”, Sourena

Maroofi, Maciej Korczyński, Arnold Holzel, and Andrzej Duda, IEEE Transac-

tions on Network and Service Management, 2021

2. “From Defensive Registration to Subdomain Protection: Evaluation of Email

Anti-Spoofing Schemes for High-Profile Domains”, Sourena Maroofi, Maciej Ko-

rczyński and Andrzej Duda, Network Traffic Measurement and Analysis Confer-

ence (TMA 2020), Germany, 2020 (Best Paper Award)

List of Industry Talks:

1. “From Defensive Registration to Subdomain Protection: Evaluation of Email

Anti-Spoofing Schemes for High-Profile Domains” (speaker), The Internet Days,

DNS Meetup, Swedish Internet Foundation, November 2020

10SPF and DMARC rules are configured and stored in DNS ‘TXT’ records.

18



Chapter 1. Introduction

1.3.4 Chapter 5: “Cybercrime After the Sunrise: A Statistical Anal-

ysis of DNS abuse in New gTLDs”

To enhance competition and choice in the domain name system, ICANN introduced the

new gTLD program, which added hundreds of new gTLDs (e.g. .nyc, .top) to the root

DNS zone. While the program arguably increased the range of domain names avail-

able to consumers, it might also have created new opportunities for cybercriminals. To

investigate this issue, we present the first comparative study of abuse in the domains

registered under the new gTLD program and legacy gTLDs (18 in total, such as .com,

.org). We combine historical datasets from various sources, including DNS zone files,

WHOIS records, passive and active DNS and HTTP measurements, and 11 reputable

abuse feeds to study abuse across gTLDs. We find that the new gTLDs appear to have

diverted abuse from the legacy gTLDs: while the total number of domains abused for

spam remains stable across gTLDs, we observe a growing number of spam domains

in new gTLDs which suggests a shift from legacy gTLDs to new gTLDs. Although

legacy gTLDs had a rate of 56.9 spam domains per 10,000 registrations (Q4 2016),

new gTLDs experienced a rate of 526.6 in the same period–which is almost one order

of magnitude higher. In this chapter, we also analyze the relationship between DNS

abuse, operator security indicators and the structural properties of new gTLDs. The

results indicate that there is an inverse correlation between abuse and stricter registra-

tion policies. Our findings suggest that cybercriminals increasingly prefer to register,

rather than hack, domain names and some new gTLDs have become a magnet for ma-

licious actors. ICANN is currently using these results to review the existing anti-abuse

safeguards, evaluate their joint effects and to introduce more effective safeguards before

an upcoming new gTLD rollout.

List of Relevant Peer-Reviewed Publications:

1. “Cybercrime After the Sunrise: A Statistical Analysis of DNS Abuse in New

gTLDs”, Maciej Korczyński, Maarten Wullink, Samaneh Tajalizadehkhoob, Gio-

vane C.M. Moura, Arman Noroozian, Drew Bagley, Cristian Hesselman, ACM

Asia Conference on Computer and Communications Security (AsiaCCS 2018),
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1. “Trends in Abuse: New and Legacy gTLDs” (speaker), 41st M3AAWG General

Meeting, Canada, September 2017

2. “Statistical Analysis of DNS Abuse in gTLDs (SADAG)” (invited speaker), ICANN

59 meeting, South Africa, June 2017

3. “Statistical Analysis of DNS Abuse in generic Top-Level Domains”, ICANN meet-

ing (invited speaker), Denmark, March 2017

1.3.5 Chapter 6: “COMAR: Classification of Compromised versus

Maliciously Registered Domains”

Miscreants abuse thousands of domain names every day by launching large-scale attacks

such as phishing or malware campaigns. While some domains are solely registered

for malicious purposes, others are benign but get compromised and misused to serve

malicious content. Existing methods for their detection can either predict malicious

domains at the time of registration or identify indicators of an ongoing malicious activity

conflating maliciously registered and compromised domains into common blacklists.

Since the mitigation actions for these two types domains are different, in this chapter, we

propose COMAR, an approach to differentiate between compromised and maliciously

registered domains, complementary to previously proposed domain reputation systems.

We start the chapter with a thorough analysis of the domain life cycle to determine

the relationship between each step and define its associated features. COMAR uses a

set of 38 features costly to evade. We evaluate COMAR using phishing and malware

blacklists and show that it can achieve high accuracy (97% accuracy with a 2.5% false-

positive rate) without using any privileged or non-publicly available data, which makes

it suitable for the use by any organization. We plan to deploy COMAR at two domain

registry operators of the European country-code TLDs and set up an early notification

system to facilitate the remediation of blacklisted domains.

List of Relevant Peer-Reviewed Publications:

1. “COMAR: Classification of Compromised versus Maliciously Registered Domains”,

Sourena Maroofi, Maciej Korczyński, Cristian Hesselman, Benoit Ampeau and

Andrzej Duda, IEEE European Symposium on Security and Privacy (EuroS&P

2020), Italy, September 2020
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and-resources/expert-papers/franco-dutch-research-project-on-automatic-

classification-of-domain-name-abuse

2. “Distinguishing exploited from malicious domain names using COMAR. Key find-

ings and future directions” SIDN (registry of .nl domain names) Blog, Sourena

Maroofi, Maciej Korczyński, Benôıt Ampeau, Thymen Wabeke, Cristian Hessel-

man, Andrzej Duda, available at: https://www.sidnlabs.nl/en/news-and-

blogs/distinguishing-exploited-from-malicious-domain-names-using-

comar

1.3.6 Chapter 7: “A Practical Approach for Taking Down Avalanche

Botnets Under Real-World Constraints”

In 2016, law enforcement dismantled the infrastructure of the Avalanche bulletproof

hosting service, the largest takedown of a cybercrime operation so far. The malware

families supported by Avalanche use Domain Generation Algorithms (DGAs) to gen-

erate random domain names for controlling their botnets. The takedown proactively

targets these presumably malicious domains; however, as coincidental collisions with

legitimate domains are possible, investigators must first classify domains to prevent un-

desirable harm to website owners and botnet victims. The constraints of this real-world

takedown (proactive decisions without access to malware activity, no bulk patterns and
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no active connections) mean that approaches from the state of the art cannot be ap-

plied. The problem of classifying thousands of registered DGA domain names therefore

required an extensive, painstaking manual effort by law enforcement investigators. To

significantly reduce this effort without compromising correctness, we develop a model

that automates the classification. Through a synergetic approach, we achieve an accu-

racy of 97.6% with ground truth from the 2017 and 2018 Avalanche takedowns; for the

2019 takedown, this translates into a reduction of 76.9% in manual investigation effort.

Furthermore, we interpret the model to provide investigators with insights into how be-

nign and malicious domains differ in behavior, which features and data sources are most

important, and how the model can be applied according to the practical requirements

of a real-world takedown.
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1. “A Practical Approach for Taking Down Avalanche Botnets Under Real-World
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Zone Poisoning: The How and

Where of Non-Secure DNS

Dynamic Updates

Coauthors: Maciej Korczyński, Michal Król, and Michel van Eeten

2.1 Introduction

The Domain Name System (DNS) provides a critical service for all Internet applications

that depend on domain names. Over the years, a variety of threats have emerged that

undermine the trustworthy resolution of domain names into IP addresses. Two well-

known attacks are cache poisoning [65] and malicious name resolution services [66,67].

What these attacks share in common is that they compromise the resolution path

somewhere between the user and the authoritative name server for a domain.

In this study, we explore an attack against the authoritative end of the path: the

zone file of the authoritative name server itself. We detail how the vulnerable-by-design,

non-secure DNS dynamic update protocol extension potentially allows anyone who can

reach an authoritative name server to update the content of its zone file. The attacker

only needs to know the name of the zone and the name server for that zone. The

vulnerability was indicated already in 1997 by Vixie et al. in RFC 2136 [68], but its

relevance in the current DNS landscape has not been recognized nor studied.

We refer to this type of attack as to zone poisoning. In the simplest version of an

attack, a miscreant could replace an existing A or MX resource record (RR) in a zone file
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of an authoritative server and point the domain name to an IP address under control

of an attacker.

We already know that criminals are interested in hacking DNS records of legit-

imate domains from the practice of domain shadowing, where registrant credentials

are compromised in order to create a large volume of subdomains of a legitimate do-

main. They are used for, among other things, distributing malware exploit kits [69]. A

more ambitious vector is hacking the registrars directly, as illustrated by the attack of

Syrian Electronic Army on Melbourne IT, the registrar for the New York Times and

Twitter [70]. In contrast to these attacks, zone poisoning does not require compromis-

ing registrants or registrars, but is as simple as sending a single RFC-compliant DNS

dynamic update packet to a misconfigured server.

We present the first study to detail this vulnerability and measure its prevalence in

the wild. Our main contributions are summarized as follows:

• We analyze the root cause of non-secure dynamic updates and how they can be

exploited.

• We measure which domains allow non-secure dynamic updates in a random sam-

ple of 1% from 286 million domains and find that 0.065% is vulnerable. Surpris-

ingly, we find a similar rate (0.062%, meaning 587 domains) for the Alexa top 1

million domains.

• Alarmingly, we find a significant number of domains of national governments,

universities, and businesses, including nine domains belonging to banks in Europe,

Middle East, and Asia, from the domain of a private banking firm to a domain

belonging to one of the largest banks in the world.

• We find significant concentrations of the vulnerability: securing the zone files of

just 10 providers would reduce the prevalence of the issue with 88.6% in the

random sample.

• We observe suspicious domains among the vulnerable population, but find no

direct evidence of ongoing attacks.

• We find that most vulnerable servers are running Windows DNS, NLnetLabs

NSD, and ISC BIND.

The objective of this study is to strengthen the security of DNS. We notified all

operators of non-secure servers discovered during our measurements.
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2.2 Background

The DNS protocol was initially designed to support queries of a statically configured

database. Most of the data in the system was updated manually and expected to change

only slowly [7]. However, with the introduction of dynamic allocation of network ad-

dresses to hosts [71], a more dynamic update mechanism for DNS became essential.

2.2.1 Dynamic Updates in DNS

DNS dynamic update specifications have been introduced by Vixie et al. in RFC 2136

[68] in 1997. Following this specification, one can add or delete any type of RR, such as

A, AAAA, CNAME, or NS. The proposed UPDATE message complies with the standard DNS

message format (cf. RFC 1035 [8]).

When a primary master server that supports dynamic updates receives an update

request, it verifies: i) if all prerequisites defined by the requestor are met (e.g. check

whether a specific record does or does not exist) and ii) whether restrictions are set

regarding which hosts are allowed to make updates and, if so, whether those restrictions

are met. If no restrictions are defined, anyone who knows the name of the zone and the

name server for that zone is capable of updating its content. This constitutes a serious

technological vulnerability indicated by Vixie et al. in RFC 2136 [68]. If the request is

sent to an authoritative slave server, it is expected that it will be forwarded towards

the primary server that is able to modify the zone file.

2.2.2 Secure DNS Dynamic Updates

Vixie et al. strongly recommended the use of security measures such as those described

in RFC 2137 [72] (superseded by RFC 3007 [73]). If secure communication is not im-

plemented, it is expected that an authoritative server accepts the dynamic updates

only from a statically configured IP address of, for example, a DHCP server [68].

In RFC 2137, Donald Eastlake describes how to use the DNS Security Extensions

(DNSSEC) [14] to restrict dynamic updates to authorized entities based on crypto-

graphic keys [72]. However, using the public key mechanism is less efficient and harder

to manage. Three years after the introduction of DNS dynamic updates, Vixie et al.

proposed an efficient, lightweight alternative to authenticate dynamic updates: Secret

Key Transaction Authentication for DNS (TSIG), which is based on shared secret keys
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and message authentication code (MAC) [74].

2.2.3 Implementations

We now analyze common implementations of DNS dynamic updates, paying special

attention to the default protocol configurations.

BIND: Berkeley Internet Name Domain (BIND) is open source and the most widely

used DNS software on the Internet [75]. Version 8, released in 1997, first included a

dynamic DNS component [76, 77]. In BIND 8 and 9, dynamic updates are disabled

by default. An administrator can add allow-update in the zone configuration and

specify the hosts that are allowed to update records. An address match list can include

entire subnetworks or the built-in argument any, that allows all hosts to make dynamic

updates. Since BIND 8.2, released in 1999, the address match list supports TSIG. The

basic configuration is still supported, however. Since BIND 9.1, slave servers are allowed

to forward dynamic updates to a master server (RFC 2136 [78]). These can use address

match lists similar to those of the master, meaning that non-secure configurations

provide an additional path for a miscreant, as updates forwarded by the slave will be

accepted by the master, regardless of the original requestor.

Microsoft DNS: Windows 2000 is the first operating system developed by Microsoft

that supported DNS dynamic updates [79]. The server can be configured either as

standard primary or as Microsoft’s Active Directory–integrated zone [80]. Windows

2000 and its successors, i.e. Windows Server 2003 [81], 2008 [82], and 2012 [83], all

support secure dynamic updates. They implement an extended TSIG algorithm (RFC

3645 [84]). When an administrator creates an Active Directory–integrated zone, by

default the server allows only secure updates via extended TSIG. However, the server

can also be configured for no or non-secure dynamic updates. More importantly, the

secure update functionality is not available for standard primary zones. In any primary

zone configured for DNS dynamic updates, anyone can modify zones.

Other Implementations: As indicated in RFC 2137 [72], any zone file allowing

dynamic updates is less secure than the one configured statically. Some of the popu-

lar open-source authoritative servers such as Name Server Daemon (NSD) developed

by NLnet Labs [85], DJBDNS created by Daniel J. Bernstein [86], or Unlogic Eagle

DNS [87] do not support dynamic updates. However, the functionality is sometimes
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added via external tools1,2. PowerDNS has recently added the dynamic update compo-

nent. According to the documentation, by default all IP ranges are allowed to perform

updates [88]. Our lab experiments (cf. Section 2.4.1) reveal, however, that by default

only loopback IP space can make dynamic updates.

In short: common implementations not only support vulnerable configurations, such

as accepting requests from all hosts, but some are vulnerable by default. Of the two

common security mechanisms, TSIG-variants and address match lists, only the former

provides a reliable defense to malicious updates. Since the attack only needs a single

UDP packet, an attacker can guess and spoof source IP addresses on the match list.

This risk could be mitigated by restricting dynamic updates to the TCP protocol only.

2.3 Threat Model

We refer to an attack that exploits non-secure dynamic updates as zone poisoning.

This attack itself is nothing more than sending a single RFC-compliant pack- et. The

requirements are: i) non-secure updates are allowed by an authoritative server for a

given zone ii) the miscreant knows the name of a zone and its name server.

An attacker can replace existing A or MX RRs in a zone file and point the domain

to an IP address controlled by the attacker and potentially running a fake web or mail

server. This would hijack the domain and allow the attacker to determine where clients

or their emails go.

A miscreant could also abuse the reputation of a legitimate domain (e.g. shopping.pl)

and add an extra A RR to an existing zone file that associates an IP address of a fake

web server with a malicious subdomain (e.g. paypal.account.shopping.pl). An in-

teresting variant is to delegate a malicious subdomain of a legitimate domain to the

criminal’s own DNS server. This would allow him to generate as many new subdomains

as needed, without making additional update requests.

Non-secure updates could also be abused to acquire a Domain Validated (DV) SSL

certificate for the vulnerable domain name, to be used in impersonation attacks. DV

SSL certs are validated and provisioned automatically using a system of “challenge-

response” emails. The attacker could re-route the confirmation message to the contact

email listed in WHOIS via a dynamic update for the mail server domain.
1https://www.sixxs.net/wiki/NSD
2http://www.thismetalsky.org/projects/dhcp dns
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2.4 Methodology

2.4.1 Lab Experiments

We performed lab experiments to establish if and how the protocol allows unauthorized

dynamic updates, in particular adding, deleting and modifying existing records in the

zone. We selected BIND 9.8.4 and PowerDNS 4.0.0-alpha2 as case studies, as both

implementations are non-commercial and widely used. We configured master servers

for our domain name (e.g., example.com) and we tested various configuration setups

as explained in Section 2.2.3. To perform updates, we used both the standard Linux

nsupdate3 command and our own scanner (see Section 2.4.2). Updates were sent from

both legitimate and spoofed source IP addresses on the address match list.

The update requests successfully added and deleted A, AAAA, NS, MX, PTR, SOA and

TXT RRs corresponding to the domain name (example.com), as well as extra records

for subdomain names (researchdelft.example.com). This way, we were also able to

replace a pre-existing A RR (example.com) that had been manually added to the zone

file at the beginning of the study. More specifically, using dynamic updates, we first

added an extra A record that associated the domain name with a new IP address, and

then removed the original one. Finally, for BIND we also configured the slave server

to forward updates towards the master. As expected, the changes were accepted by

the master even though the original requestor is allowed to make changes only in the

slave server.

To conclude, our lab experiments demonstrate that systems which allow non-secure

dynamic updates are vulnerable to attacks that can “modify” existing records and add

new records. Non-secure update mechanisms cover both overly promiscuous address

match lists (“any”) as well as more focused match lists, which can be bypassed via IP

spoofing.

2.4.2 Scanning Setup

To assess the potential impact of non-secure dynamic updates, we have developed an

efficient scanner capable of sending DNS packets compliant with RFC 2136 [68]. The

scanner attempts to add an extra A record to the zone file, associating a new upper-level

domain, researchdelft, with the IP address of our project’s web server. We do not
3http://linux.die.net/man/8/nsupdate
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spoof the source IP address of the update request. Our web server describes the project

and provides a method to opt-out from our scans. Note that we have not received a

single abuse complaint or opt-out request – which might mean that the insertion of

the record was not seen as problematic or, perhaps more likely, that the insertion went

unnoticed. The scan does not interact with the existing data in the zone file. Since our

request is technically equivalent to a regular update request, we do not expect it to

interfere with normal activity and have seen no evidence to the contrary.

We analyzed responses of authoritative name servers and performed DNS lookups

to verify if our domain resolved to our web server’s IP address. We also performed a

ten-day long study to estimate the time the added RR stays in a zone. Finally, we

removed the test DNS record by sending a delete UDPATE request and then tried to

resolve it again. All added records were successfully deleted.

2.4.3 Ethical Considerations

While vulnerability scanning has become an established part of security research, our

approach does raise ethical questions because of the fact that the only valid method

available to us for assessing the vulnerability of a DNS server was to add a record to

the zone file.

We have submitted the study to the TU Delft Human Research Ethics Committee.

The committee evaluated our request and stated that we did not need their authoriza-

tion since we were not conducting human subjects research. While this makes sense,

it also signals that current institutional review procedures are not set up to evaluate

ethical issues in computer security.

We have assessed our work using the principles outlined in the Menlo report [89].

We do not collect data on persons. Getting informed consent before adding a record to

the zone file is both unpractical and would introduce selection bias, since administra-

tors of well-secured servers are more likely to consent. We do provide a clear opt-out

mechanism via the website referenced in the added DNS record. The site also provides

full transparency regarding the study and its objectives.

Our approach in testing the vulnerability has been designed to have as minimal

impact as possible: we send a single RFC-compliant packet. We do not read, change

or otherwise engage with any existing records. We feel the drawback of lacking consent

from server operators is outweighed by the benefits of our measurement for those oper-
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Table 2.1: Datasets

# 1% Sample Alexa 1M
Domains 2,865,393 947,823
NS 510,850 487,515
IPs of NS 438,478 418,251
Domain–NS–IP 27,499,061 7,368,659

ators: to be made aware of a critical vulnerability in their DNS server. All notifications

have been completed before the publication of this paper. The new record is highly

unlikely to be discovered by accident and it is removed at the end of the study.

2.4.4 Dataset

To measure the prevalence of non-secure configurations, we collected data for two sam-

ples: a random sample of 1% of the domain space and the Alexa top 1 million domains

(or Alexa 1M) [90].

First, we extracted all domains observed in two complementary datasets between

Jan 2015 and Jan 2016: i) DNSDB that is a large passive DNS database fed by hun-

dreds of sensors across the world, operated by Farsight Security [91], which generously

provided access to us and ii) Project Sonar Data Repository obtained though ANY RR

requests, made available by Rapid7 Labs [92].

From the total 286,788,250 unique domains in the set, we randomly sampled 1%.

For that sample and for the Alexa 1M, we enumerated all observed combinations of

name servers and their IP addresses in both datasets: over 27 and 7 million, respectively

(cf. Table 2.1). The long period of observation and the fact that DNSDB contains many

entries that are poisoned either maliciously [66, 67] or unintentionally [93], means we

expected a lot of IP addresses on the list to be obsolete, but we wanted to find as many

as possible.

We performed the vulnerability assessment against the random sample on Mar 30,

2016 and against the Alexa 1M on Apr 10, 2016. For each domain, we sent an UPDATE

request directly to all IP addresses on the list. As expected, many did not respond. Next

to obsolete NS information, this can also indicate network filtering and other policies at

work. We received responses from 6.0 million (random sample) and 2.3 million (Alexa

1M) name servers (see Table 2.2).
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Table 2.2: DNS responses to UPDATE requests

DNS 1% Sample Alexa 1M
Response in # in % in # in %
All 6,007,462 100 2,294,099 100
REFUSED 2,325,377 38.7 1,265,544 55.2
FORMERR 1,374,015 22.8 260,094 11.3
NOTAUTH 1,198,337 19.9 357,442 15.6
NOTIMP 727,734 12.1 357,592 15.6
SOA 237,175 3.9 18,241 0.8
SQR∗ 114,677 1.9 25,851 1.1
NOERROR 13,580 0.2 5,093 0.2
SERVFAIL 6,621 0.2 3,830 0.2
Other 9,946 0.2 412 0

* Standard Query Response

2.5 Results

2.5.1 Prevalence of Vulnerable Resources

Table 2.2 summarizes the DNS status codes received in response packets related to the

UPDATE requests. As expected, the great majority of requests fail to add RRs to the

zone. The most common code is REFUSED, meaning that the server refuses to perform the

operation for security or policy reasons. Around 12.1% and 15.6% of name servers signal

NOTIMP meaning that they do not implement the protocol extension, whereas 22.8% and

11.3% of servers are not even able to parse and interpret the dynamic update request

and signal FORMERR. Next, 19.9% and 15.6% of name servers signal that they are not

authoritative for the zone. The main reason for DNS responses with the NOTAUTH error

flag is the presence of obsolete NS information in our dataset as described in Section

2.4.4. Approximately 0.2% of servers signal SERVFAIL meaning that a hardware error

or an out-of-memory condition might have taken place and a zone is restored to its

state before this transaction [68]. We find 13,580 and 5,093 systems to respond with

NOERROR status code for 1% sample and Alexa 1M respectively, which in both cases

corresponds to 0.2% of responses. Note that NOERROR includes all responses with this

status flag set regardless of whether the actual content of the zone has been updated.

We sent an A RR request to each of the potentially updated servers to verify if the

zone file was indeed updated. For the random sample, we observed 2,626 successfully

added A RRs, corresponding with 188 unique name servers and 1,877 unique domain
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Figure 2.1: Types of providers hosting vulnerable domains.
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Figure 2.2: Cumulative distribution of vulnerable domains over providers.

names (0.065% of all randomly selected second-level domains). Surprisingly, we also

observed 881 added A RRs that corresponded to 560 unique name servers and 587

domains from Alexa 1M (0.062%)
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Figure 2.3: Results for FPDNS fingerprinting of authoritative servers for (a) all 1% sample
of the domain space, (b) vulnerable 1% sample, (c) vulnerable Alexa 1M domains (data
may not sum up to 100% due to the round-off error).

2.5.2 Affected Domains

To get a sense of the population of vulnerable domains, we first analyzed the type of

network that hosts them. In earlier work, we developed a categorization of providers

based on ground-truth data, manual labeling, WHOIS records and passive DNS data –

for more details, see [94,95]. We were able to classify 105 (out of 206) providers for the

random sample and 210 (out of 398) for the Alexa 1M.

Figure 2.1 outlines the number of providers that have at least one vulnerable server

in their network. As expected, hosting and ISP broadband constitute a great portion
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of the affected providers. Interestingly, we observe misconfigured zones in as many as

52 educational networks in the Alexa 1M.

Figure 2.2 shows the cumulative distribution of vulnerable domains over providers.

In the random sample, we find that 66.2% (1,149) of vulnerable domains are hosted on

the infrastructure of a single Japanese broadband ISP. Reconfiguring the zone files of

just 10 providers would reduce the prevalence of the issue with 88.6%. If this kind

of concentration is representative of the overall domain space, then reaching out to a

limited number of operators could greatly increasing the costs of finding vulnerable

domains for cybercriminals. For the Alexa 1M, the pattern is much less concentrated.

This might not be a major obstacle for remediation, though, as the high traffic sites in

this set are typically professionally operated, so a comprehensive notification campaign

might be effective.

We further analyze the cumulative distributions of vulnerable domains on DNS

servers in descending order of the number of their common domains. For reasons of

brevity, we highlight only the most interesting findings. In vulnerable 1% sample, we

find that only one server is authoritative for as many as 1,635 (87%) domains, whereas

in Alexa 1M, one DNS server is associated with 154 (26%) domains. As expected

the cumulative concentrations per DNS servers are similar to the ones observed for

providers (see Figure 2.2) as they operate the name servers themselves. In the 1%

sample, for example, just six servers that share the same second- and top-level domain

(*.dnsserver.net) are authoritative for 89.8% of the vulnerable domains, all hosted

by the same broadband ISP in Japan.

We manually inspected the vulnerable domains from Alexa 1M. Table 2.3 lists the

types of organizations affected. ’Business’ is a large category that covers a heteroge-

neous set of companies, from small to large. In the latter category, we find a variety

of sites related to global car manufacturers. We also find 56 vulnerable governmental

sites in the North America, Europe, Asia – some national, some regional. Affected ed-

ucational domains have a similar geographical distribution and include a few reputable

universities. In health care, we found several hospitals and the domain of a national

medical association. Remarkably, nine of the vulnerable domains belong to banks in

Europe, Middle East and Asia, ranging from a small private banking firm to a domain

of one of the largest banks in the world. In sum: the vulnerability is found to undermine

the security of high-profile businesses, governments and organizations.
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Table 2.3: Categories of vulnerable domains for Alexa 1M

Type in # in %
Business 181 31
Entertainment 92 15.7
Educational 90 15.3
Governmental 56 9.5
News services 41 7
Adult 13 2.2
Financial services 9 1.5
Health care 8 1.4
Other 95 16.2
Total 587 100

2.5.3 Exploitation

We looked for evidence of whether non-secure updates were exploited in the wild.

We checked the overlap between the vulnerable domains and domains blacklisted by

StopBadware [96] and the Anti-Phishing Working Group (APWG) [97] in 2015. The

former consists of 1,016,961 unique fully qualified domain names (FQDNs) whereas

the latter of 1,967,995. In APWG and StopBadware, respectively, we find 15 and 45

blacklisted FQDNs related to vulnerable second-level domains for Alexa 1M and only

1 and 5 for the random sample. After manual inspection of the website content, we did

not find any compelling evidence that the observed domains are actually affected by

malicious dynamic updates. The sites seemed legitimate and might either represent false

positives or compromised resources.

We also searched in DNSDB for FQDN of vulnerable domains in association with

common words in phishing attacks [98, 99], such as Paypal, Apple, Taobao, Ama-

zon, etc. We find some suspicious FQDNs, for example, shopping.*.com.*.*.edu or

*.alibaba.com.*.ru.

However, the sites are either offline or require some additional authentication to access.

Some of them seem legitimate proxy services, e.g., university resources that require

authorized access and redirect users to an external website.

2.5.4 Affected DNS Server Software

We surveyed the software running on non-secure authoritative name servers to see

which packages were affected. On Apr 24, 2016 we scanned three groups of servers

by using FPDNS software [100]: i) all 510,850 name servers from the random sample,
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for comparative purposes; ii) the 188 vulnerable servers from the random sample; and

iii) the 560 vulnerable servers from the Alexa 1M sample. Fingerprinting failed in

many cases due to timeouts or inconclusive signatures. We were able to obtain software

information for 45% (232,317), 38% (72), and 41% (227) of each respective group. We do

not distinguish between different software versions as there are no major changes in the

implementation of secure DNS dynamic updates (cf. Section 2.2.3). Figure 2.3 illustrates

the results for DNS software fingerprinting. The majority of servers authoritative for

the total random sample run BIND (37%). Microsoft Windows DNS constitutes just

0.5% of this group, while for the vulnerable groups it is the dominant package: 19% and

27%. The second and third largest groups of vulnerable server types are NLnetLabs

NSD and ISC BIND. As the standard package of NLnetLabs NSD does not include the

functionality for dynamic updates, we suspect that it might be added through some

external, RFC-compliant plugin (see Section 2.2.3).

2.5.5 Survival Analysis

The final part of the study aimed to measure the survival times of the added records.

We wanted to analyze whether these records would be removed and, if so, how soon.

In other words, are there self-correcting mechanisms in place?

We initiated measurement on Apr 16, 2016. We first sent an update request to add

an extra A RR (see Section 2.4.2) to the previously confirmed instances of vulnerable

domains. We observe 3,920 successfully added A records that correspond to 1,870 do-

main names for 1% sample and 1,691 A RR associated with 584 domains for Alexa 1M

domains.

Then, over a 10-day period, we performed DNS lookups every 4 hours—sending

an A RR request to each of the IP addresses of the servers associated with vulnerable

domains. We performed survival analysis on the results using the standard Kaplan-

Meier estimator to approximate the survival function [101].

The results indicate a very small removal rate of the added record (cf. Figure 2.4).

We do not know why some records were removed, but one plausible explanation is that

the zone transfer from the primary master may have overwritten the added entries. At

the end of our experiment, records were still present in around 94.3% (3,696) of the

random sample and 95.9% (1,622) of the Alexa 1M domains. Interestingly enough, the

Alexa 1M does not have a higher removal rate than the random sample; in fact, it does
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Figure 2.4: Survival analysis of A records added to vulnerable servers for 1% sample
and Alexa 1M domains.

slightly worse. In light of the fact that we were not contacted by any of the operators

of the non-secure servers, suggesting no one saw the added record, it seems that there

are no other security mechanisms in place to discover and mitigate the threat.

2.6 Conclusions

We presented the first measurement study into the vulnerability of non-secure DNS

dynamic updates, which enables an attack we referred to as zone poisoning. We have

measured prevalence rates for a random sample of 2.9 million domains (0.065%) and

for the Alexa top 1 million domains (0.062%) and found that the vulnerability poses a

serious security flaw that deserves more attention from domain owners and DNS service

operators.

Certain limitations have to be taken into account to contextualize the obtained re-

sults. First, and perhaps foremost, we should note that our measurements establish a

conservative lower bound for the magnitude of the problem. The servers that rely on

address match lists to secure dynamic updates are counted as ’secure’ in our measure-

ment, but they are still vulnerable to IP spoofing. The attack requires only a single

packet, making it possible for attackers to guess addresses that are on the match list.

The datasets in our study also present certain inherent limitations. For example,

DNSDB has extensive, but not complete coverage of the domain name space. It also

contains entries that are poisoned or obsolete, so many servers did not respond to

our dynamic updates. Finally, we should note that responsibility is distributed and

complicated. The fact that we found certain providers and software packages to be

associated with vulnerable domains, should not be interpreted as assigning blame.

The next step for this work is to expand measurement and notify all affected parties,

in order to improve the security of the DNS ecosystem, a critical service for many

applications.
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3.1 Introduction

The Internet relies on IP packets to enable communication between hosts with the

destination and source addresses specified in packet headers. However, there is no

packet-level authentication mechanism to ensure that the source address has not been

altered [102]. The modification of a source IP address is referred to as “IP spoofing”.

It results in the anonymity of the sender and prevents a packet from being traced to

its origin. Reflection-based Distributed Denial-of-Service (DDoS) attacks leverage this

mechanism and become even more effective using amplification [103–106]. As it is not

possible in general to prevent packet header modification, concerted efforts have been

undertaken to prevent spoofed packets from reaching potential victims. Filtering pack-

ets at the network edge formalized in RFC 2827 and called Source Address Validation

(SAV) [28,107] can achieve this goal.
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Given the prevalent role of IP spoofing in cyberattacks, there is a need to estimate

the level of SAV deployment by network providers. Projects such as Spoofer [108] al-

ready enumerate networks that do not implement packet filtering. However, a great

majority of this existing work concentrates on outbound SAV since it can prevent

reflection-based DDoS attacks near their origin [104]. While less obvious, the lack of

inbound filtering enables an external attacker to masquerade as an internal host of a net-

work, which may reveal valuable information about the network infrastructure usually

not seen from the outside. Inbound IP spoofing can serve as a vector for zone poison-

ing attacks [109] that may lead to domain hijacking or cache poisoning attacks [13]

even if the Domain Name System (DNS) resolver is correctly configured as a closed re-

solver. A closed resolver only accepts DNS queries from known clients and does so by

matching the source IP address of a query against a list of allowed addresses.

The lack of SAV for inbound traffic can also have devastating consequences when

combined with the DNS Unchained [105] or the NXDOMAIN attack (also known as

the Water Torture Attack) [110], or the recently discovered NXNSAttack [111]. These

attacks result in Denial-of-Service against both recursive resolvers and authoritative

servers with a maximum packet amplification factor of 1,620 for the NXNSAttack [111].

IP spoofing is not required for this attack to succeed because any client can attack a

resolver if it is allowed to query it. However, IP spoofing can greatly increase the number

of affected resolvers by allowing an external attacker to target closed DNS resolvers:

the attacker simply needs to masquerade as a legitimate client by spoofing its source

IP address. Deploying inbound SAV at the edge of a network is an effective way of

protecting closed DNS resolvers from this type of external attacks.

In this chapter, we present the results of the Closed Resolver Project [112]. The goal

is to enumerate networks vulnerable to inbound spoofing Internet-wide as the first step

in estimating the scale of the problem. We extend our previous work [113] and make

the following main contributions:

(1) We exhaustively enumerate networks that do not deploy inbound

SAV for IPv4. We propose a new method to identify networks that do not filter

inbound traffic by using spoofed IP addresses. We perform Internet-wide scans of all

BGP prefixes maintained by RouteViews [114] for the entire IPv4 address space to

identify closed and open DNS resolvers in each routable network of the Internet. We

send a DNS request of type A to each routable IP address (target address) in a packet
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with a spoofed source IP address: when sending the request to X, we choose X + 1 as

the source IP address. If there is no filtering in either transit networks or at the network

edge, the target will receive our request. If it is a DNS resolver and our spoofed address

matches the list of allowed clients, the resolver will resolve our request. As we spoof

the source IP address, the response from the resolver is not routed back to our scanner,

preventing us from analyzing it. However, we control the authoritative name server

for the queried domains and we can observe queries sent by the resolver under test,

either directly or through a chain of forwarding resolvers. Overall, this method identifies

networks that do not correctly filter incoming packets without the need for a vantage

point inside the network itself. The only requirement is that the network contains a

DNS resolver (possibly closed).

(2) We enumerate IPv6 networks not deploying inbound SAV. IPv6 adop-

tion gradually increases [115] so, the IPv6 Internet is becoming an attractive attack

vector partly due to network operators not protecting the IPv6 portion of their net-

works as well as IPv4 [116]. Given the number of available addresses, a complete scan

of the IPv6 address space (as explained previously for IPv4) is not computationally fea-

sible. Instead, there are other ways to discover active IPv6 hosts, for example, through

DNS zone transfers [117, 118]. One source of responsive addresses is the IPv6 Hitlist

Service [119] that we use in this study. To enrich this list, we also deploy a two-level

DNS zone infrastructure that forces resolvers to use both IPv4 and IPv6 to resolve our

domain names, thus discovering IPv6 resolvers as a by-product of the IPv4 scan. Then,

we perform a scan of the enumerated IPv6 addresses using the same method as for

IPv4.

(3) We enumerate IPv4 and IPv6 networks deploying inbound SAV. The

above technique, when applied alone, can reveal the absence of inbound SAV at the

network edge. However, we would also like to confirm the presence of inbound SAV

(possibly in transit). To achieve this goal, we send unspoofed DNS queries and identify

5.3 M IPv4 and 15.9 K IPv6 open resolvers. If open resolvers reply to the unspoofed

requests but not to the spoofed ones, we can infer the presence of SAV for incoming

traffic either at the network edge or in transit networks. By using the two methods, we

can detect both the absence and the presence of inbound SAV either at the network

edge or in transit.

(4) We combine different methods to check SAV compliance in both di-
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rections. We collect the latest Spoofer data (over 1 month) and use a method proposed

by Mauch [120] to infer the absence and the presence of outbound SAV. In this way, we

can study the SAV deployment policies per provider in both directions. Previous work

demonstrated the difficulty in incentivizing providers to deploy filtering for outbound

traffic as it benefits other networks and not the network doing the deployment [121].

This work shows that even though SAV for inbound traffic directly benefits the networks

deploying it, it is less widely deployed than SAV for outbound traffic.

(5) We compare SAV deployment status over IPv4 and IPv6. We first

perform the analysis at the individual host level by identifying potentially dual-stacked

DNS resolvers. For every (IPv4, IPv6) address pair, we gather DNS-level information

such as the version.bind and pointer (PTR) records to confirm that both addresses be-

long to the same host. We also use other general-purpose fingerprinting tools to identify

services running on ports 22, 80, 123, 443, and 587. Hardware and software information

about each pair provides evidence on whether the two addresses belong to the same

host or not. As single dual-stack machines are likely to exhibit the configuration of

the whole BGP prefix and an autonomous system [116], we then compare the filtering

policies at the level of autonomous systems. As a result, we show that SAV is less often

deployed for IPv6 than it is for IPv4, both at the autonomous system and individual

host levels.

(6) We analyze the geographical distribution of resolvers and networks

vulnerable to inbound spoofing. Identifying the countries that do not comply with

the SAV standard is the first step in mitigating the issue with the possibility of con-

tacting local Computer Security Incident Response Teams (CSIRTs).

The rest of the chapter is organized as follows. Section 3.2 provides background on

Source Address Validation and Section 3.3 discusses related work. Section 3.4 introduces

our methodology. Section 3.5 provides the main results and their analysis. Section 3.6

discusses the geographic location of vulnerable networks. Finally, Section 3.7 concludes

the paper and gives some directions for future work.

3.2 Background

In 2000, RFC 2827 proposed Source Address Validation (SAV) as a means for mitigating

a growing number of DDoS attacks. The proposed solution was to discard packets with
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source addresses not following filtering rules. This operation is most effective when

applied at the network edge [28]. RFC 3704 proposed different ways to implement

SAV including static Access Control Lists (ACLs) and reverse path forwarding [122].

Packet filtering can be applied in two directions: inbound with respect to a customer

(for packets coming from the outside to the customer network) and outbound from a

customer (for packets coming from the customer network to the outside). The lack of

SAV in any of these directions may result in different security threats.

Attackers may benefit from the absence of outbound SAV to launch DDoS attacks,

in particular, amplification and reflection attacks: they use public services prone to am-

plification [103,104] to which they send requests on behalf of their victims by spoofing

their source IP addresses. The victim is then overloaded with the traffic coming from

the services rather than from the attacker. In this scenario, the origin of the attack

is not traceable. One of the most successful attacks against GitHub resulted in traffic

of 1.35 Tb/s: attackers redirected Memcached responses by spoofing their source ad-

dresses [123]. In such scenarios, spoofed source addresses are usually random globally

routable IPs. In some cases, to impersonate an internal host, a spoofed IP address may

be chosen to match a legitimate IP address of the target network, which may reveal

the absence of inbound SAV [122].

Pretending to be an internal host reveals information about the inner network struc-

ture such as the presence of closed DNS resolvers that only accept queries from clients

within the same network. Attackers can further exploit closed resolvers, for instance,

to leverage misconfigurations of the Sender Policy Framework (SPF) [124]. In case of

an incorrectly deployed SPF configuration, attackers can trigger closed DNS resolvers

to perform an unlimited number of requests on behalf of mail servers, thus introduc-

ing a potential DoS attack vector. Combined with inbound spoofing, mail servers, not

otherwise reachable from the outside, can also be exploited.

The absence of SAV for inbound traffic may also have serious consequences when

combined with the DNS Unchained attack [105], the NXDOMAIN attack (also known as

the Water Torture Attack) [110] or the recently discovered NXNSAttack [111]. These

attacks result in Denial-of-Service against both recursive resolvers and authoritative

servers. The NXNSAttack exploits the way recursive resolvers deal with referral re-

sponses (domain delegations) that provide the mapping between a given domain name

and its authoritative nameserver without a glue record, i.e., the IP addresses of the
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nameserver. The maximum packet DDoS amplification factor of the NXNSAttack at-

tains 1,620 [111]. It also saturates the cache of the resolver, even the closed one, if the

attack uses IP spoofing and inbound SAV is not in place.

The possibility of impersonating a host on the victim network can also assist in the

zone poisoning attack [109]. A master DNS server, authoritative for a given domain,

may be configured to accept non-secure DNS dynamic updates from a DHCP server

on the same network [68]. Thus, sending a spoofed update from the outside with an IP

address of that DHCP server will modify the content of the zone file [109]. The attack

may lead to domain hijacking. Another way to target closed resolvers is to perform DNS

cache poisoning [13]. An attacker can send a spoofed DNS request for a specific domain

to a closed resolver, followed by forged replies before the arrival of the response from

the genuine authoritative server. In this case, the users who query the same domain

will be redirected to where the attacker specified until the forged DNS entry reaches

its Time To Live (TTL).

Inbound IP spoofing is not limited to DNS-based attacks and can be combined

with other vulnerable protocols (e.g., NTP, SNMP, SSDP [103], FTP, HTTP, Telnet

[125], etc.) to launch self-directed amplification DDoS or attacks against other hosts in

the same network. For example, NTP is known for its high amplification rates up to

4,670. An attacker sending spoofed requests on behalf of the victim trusted by private

NTP servers can generate a huge amount of traffic towards the victim in the same

network [103,104].

Despite the knowledge of these attack scenarios and the costs of the damage they

may incur, SAV is not yet widely deployed. Lichtblau et al. surveyed 84 network oper-

ators to learn whether they deployed SAV and what challenges they faced [126]. The

reasons for not performing packet filtering included incidentally filtering out legitimate

traffic, equipment limitations, and lack of a direct economic benefit—in case of out-

bound SAV, a compliant network cannot become an attack source, but it can still be

attacked itself, which creates few incentives to become compliant. By contrast, inbound

SAV protects networks from direct threats as described above, and is thus beneficial

from an economic perspective.
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Table 3.1: Methods to infer deployment of Source Address Validation

Method Direction Presence/
Absence Remote

Relies on
misconfigu-
rations

Spoofer [108,121,127] both both no no
Forwarder-based [30,104] outbound absence yes yes
Traceroute loops [128] outbound absence yes yes
Passive detection [126] outbound both no no
Spoofer-IX [129] outbound both no no
Our method [112] inbound both yes no

3.3 Related Work

3.3.1 Source Address Validation

Table 3.1 summarizes several methods proposed to infer SAV deployment. They differ

in terms of the filtering direction (inbound/outbound), whether they infer the presence

or absence of SAV, whether measurements can be done remotely or on a vantage point

inside the tested network, and if the method relies on existing network misconfigura-

tions.

The Spoofer project [108, 121, 127] deploys a client-server infrastructure mainly

based on volunteers (and “crowdworkers” hired for one study trough five crowdsourcing

platforms [130]) that run the client software from inside a network. To test outbound

SAV compliance, the active probing client sends both unspoofed and spoofed packets

to the Spoofer server either periodically or when it detects a new network. The server

inspects received packets (if any) and analyzes whether filtering disables spoofing and

to what extent [102]. For each client running the software, Spoofer identifies its /24

IPv4 address block (or /40 for IPv6) and the autonomous system number (ASN). It

makes the results publicly available.1 Testing inbound SAV compliance operates in the

opposite direction—the Spoofer server sends packets to the client with spoofed source

addresses belonging to the client network. However, the authors do not make the re-

sults public to protect vulnerable networks. This approach identifies the absence and

the presence of SAV in both directions. The results obtained by the Spoofer project

provide the most confident picture of the deployment of outbound SAV and have cov-

ered tests from 8,779 ASes since 2015. However, the network administrators not aware

of the spoofing issue or those who do not deploy SAV are less likely to run Spoofer in

their networks.
1https://spoofer.caida.org/summary.php
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A more practical approach is to perform such measurements remotely. Kührer et

al. [104] scanned for open DNS resolvers, as proposed by Mauch [30] to detect the

absence of outbound SAV. They leveraged misconfigured forwarding resolvers that for-

ward a request to a recursive resolver with either i) the packet source address not

changed to its own address or ii) the response to the client sent with the source IP of

the recursive resolver [104,131]. They fingerprinted those forwarders and found out that

they were mostly embedded devices and routers. Misconfigured forwarders originated

from 2,692 autonomous systems. We refer to this technique as forwarder-based.

Lone et al. [128] proposed another method that does not require a vantage point

inside a tested network. When packets are sent to a customer network with a routable

but not allocated address, it is sent back to the provider router without changing its

source IP address. The packet, having the source IP address of the machine that sent it,

should be dropped by the router because the source IP does not belong to the customer

network. The method detected 703 autonomous systems not deploying outbound SAV.

While the above-mentioned methods rely on actively generated (whether spoofed or

not) packets, Lichtblau et al. [126] passively observed and analyzed inter-domain traffic

exchanged between more than 700 networks at a large interconnection point (IXP).

They classified observed traffic into bogon, unrouted, invalid, and valid based on the

source IP addresses and AS paths. The most conservative estimation identified 393

networks that generated the invalid traffic. Müller et al. [129] developed Spoofer-IX,

another methodology to detect spoofing at the IXP level. Their traffic classification took

into account AS business relationships, asymmetric routing, and traffic engineering.

Deployed at one mid-sized IXP during five weeks, it measured 40 Mb/s as the upper

bound of spoofed traffic.

We are the first to propose a remote method (no vantage points are needed in the

tested networks) to detect the absence of inbound SAV that does not rely on existing

misconfigurations. Instead, we take advantage of the presence of local DNS resolvers in

remote networks (both open and closed) to infer the absence of packet filtering or the

presence of SAV either at transit networks or the edge.

3.3.2 Dual-Stack

To compare the SAV deployment status over IPv4 and IPv6, we identify seemingly

dual-stacked DNS resolvers.
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Several researchers used DNS to obtain candidate (IPv4, IPv6) address pairs that

likely indicate to be the same physical machine (also called dual-stacked). Berger et

al. [132] developed two passive and active techniques to find such pairs. They deployed

the passive method over the existing production infrastructure consisting of a two-

level authoritative nameserver hierarchy in which the first-level server, reachable over

IPv4, returns records of the second-level server. In its DNS response, it also encodes

the IPv4 address of the contacting client. Each request arriving at the second-level

nameserver over IPv6 gives the initial IPv4 query. This method is not restricted to

open resolvers and does not actively generate additional DNS requests. The method

discovered 674 K candidate pairs during a period of six months. The second, active

technique relies on sending requests to open resolvers for such multi-level domains,

which imply switching between IPv4 and IPv6 protocols using CNAME records. In a one-

day measurement session, they probed 200 times 7 K open resolvers and revealed 41 K

address pairs.

Hendriks et al. [133] enumerated the population of open IPv6 resolvers to ana-

lyze whether they could be used as efficient DDoS amplifiers. They first performed an

Internet-wide scan to find open resolvers over IPv4 and queried them for specifically-

crafted domains that could only be reached by traversing from IPv4 to IPv6. This

method discovered 1.49 M unique candidate pairs and 1,038 unique IPv6 resolvers.

The two approaches described above do not necessarily find candidate pairs that

are single dual-stacked machines (also called siblings). There is a need to validate those

results. Beverly et al. [134] proposed a technique not limited to DNS resolvers based

on the collected TCP-level information such as option signatures and timestamps. The

algorithm was 97% accurate in identifying sibling relationships. In 2017, Scheitle et

al. [135] developed a machine-learning algorithm that also gathered various TCP-level

features (options, timestamp clock frequency, timestamp value, clock offset, etc.) and

calculated a variable clock skew. The precision of the algorithm exceeded 99%.

Czyz et al. [116] showed that the IPv6 Internet is more open than IPv4. They

developed two candidate lists: router IP pairs and pairs derived from DNS zone files.

They probed all addresses on various ports for services expected to run on routers

and DNS servers. To ascertain that some pairs were indeed dual-stacked machines,

they collected fingerprinting information of the following applications: HTTP, HTTPS,

SNMP, NTP, SSH, and MySQL. Based on this information, they confirmed that 96%
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of router and 97% of nameserver pairs, open on at least one of the ports, were the same

physical machines.

To compare the SAV deployment status over IPv4 and IPv6, we have deployed a

two-level hierarchical DNS zone infrastructure that forces a recursive resolver to switch

from IPv4 to IPv6 (and vice versa) to resolve our domain names. Whenever we detect

that an IPv4 or IPv6 resolver is also reachable over IPv6 and IPv4, respectively, we

consider such address pairs to be dual-stack candidates. We send spoofed and non-

spoofed packets to target both open and closed resolvers. We then fingerprint them on

different ports to gather evidence on whether each pair belongs to the same physical

machine.

3.4 Methodology

In this section, we present the methodology for identifying networks that do not cor-

rectly filter incoming packets.

3.4.1 IPv4 Spoofing Scan

The core idea of the spoofing scan is to send a hand-crafted DNS A record request

packet with a spoofed source address to all IP addresses in a tested network. We

have developed an efficient scanner2 running on a machine in a network that does not

deploy outbound SAV so that we can send packets with spoofed IP addresses. When

a resolver inside a network vulnerable to inbound spoofing performs query resolution,

we observe it on our authoritative DNS servers. To prevent caching and to identify

the true originator in case of forwarding, we query every time the following unique

domain name composed of: a random string, the hex-encoded resolver IP address (the

destination of our query), a scan identifier, the IP version subdomain and the domain

name itself. The encoded IP address lets us identify forwarders: if the IP address seen

on our authoritative nameservers is not the same as originally queried (extracted from

the domain name), we know that the query destination is a forwarder. An example

domain name is dklL56.01020305.s1.v4.drakkardnsv4.com.

Figure 3.1 shows the scanning setup for the example 1.2.3.0/24 network. In Step 1©,

the scanner sends one spoofed packet to each potential host of the network (packets to
2We make the scanner available to the interested researchers upon request.
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Figure 3.1: Setup of the spoofing scan over IPv4. We set up devices on the left-hand
side (scanner, authoritative nameservers) and do not have control over the remaining
infrastructure.

256 destinations in total). The spoofed source IP address is always the next one after

the destination. When the scanner sends the spoofed packet containing the DNS query,

there are four possible cases:

• Packet filtering in transit network or random losses. The spoofed packet

can be filtered anywhere in transit or dropped due to reasons not related to IP

spoofing such as network congestion [102].

• Packet filtering (inbound SAV) in place. When the spoofed DNS packet

arrives at the destination network edge (therefore it has not been filtered anywhere

in transit), the packet filter inspects the packet source address and detects that

such a packet cannot arrive from the outside because the address block is allocated

inside the network. Thus, the filter drops the packet.

• No packet filtering (inbound SAV) in place and no DNS resolver. The

packet enters the networks, but there is no local DNS resolver on the tested

network, so the DNS query is not resolved. In some cases, the DNS resolver is

present but may be configured to refuse queries coming from its local area network

(for example, if the whole separate network is dedicated to the infrastructure), so

the packet is also dropped.

• No packet filtering (inbound SAV) in place and the destination host
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is a DNS resolver. The scanner eventually reaches all the hosts in the network

and the local DNS resolver if there is one (1.2.3.5 in Figure 3.1). When the

local resolver receives a DNS A record request (Step 2©) from a host on the

same network (1.2.3.6), it performs query resolution (Steps 3©– 6©) so that our

authoritative DNS server receives the query and replies. The local resolver sends

the response to the source address (Step 7©), dropped by the destination.

Note that only the last case allows inferring the absence of inbound SAV and

we cannot distinguish between the first three cases.

There are two types of resolvers: forwarders that forward queries to other recur-

sive resolvers and non-forwarders that resolve queries they receive. Therefore, the non-

forwarding local resolver (e.g., 1.2.3.5) inspects the query that looks as if it was sent

from 1.2.3.6 and performs the resolution by iteratively querying the root (Step 3©)

and the top-level domain name (Step 4) servers until it reaches our authoritative DNS

servers in Steps 5© and 6©. Alternatively, it forwards the query to another recursive

resolver that repeats the same procedure as described above for non-forwarders. In

Step 7©, the DNS A query response is sent to the spoofed source (1.2.3.6).

Our goal is to scan the whole IPv4 address space, yet taking into account only

globally routable and allocated address ranges. We use the data maintained by the

RouteViews Project [114] to get all the IPv4 blocks currently present in the BGP

routing tables and send spoofed DNS requests to all the hosts of the prefixes.

3.4.2 IPv6 Spoofing Scan

The complete scan of the IPv6 space is not possible, even considering only the networks

present in the BGP routing tables. We use source IPv6 addresses discovered by dual-

stack identification described in Section 3.4.4 and the addresses from the IPv6 Hitlist

Service [119]. On the day of measurements, the IPv6 Hitlist Service contained 270 M

addresses for scanning.

We send spoofed DNS A requests to all hosts from our hitlist and spoof the source

to be the next IP address after the target. The format of the domain name is similar

to the IPv4 one: qGPDBe.long int(ipv6).s1.v6. drakkardnsv6.com. We represent the

IPv6 address as a long integer to identify the initial query destination uniquely and to

distinguish forwarders from non-forwarders. We still send requests for the DNS A record,

as changing the network protocol does not influence the retrieved resource records.
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Figure 3.2: DNS zone setup. Rectangles with solid lines represent authoritative name-
servers for the corresponding DNS zones (domain names) under our control. The .com
zone (dashed) only contains glue records (IP addresses) of nameservers authoritative
for our domains and is out of our control. Edges indicate the network protocol (IPv4
or IPv6) needed to reach a given zone.

3.4.3 Open Resolver Scan

In parallel to the spoofing scan, we perform an open resolver scan over IPv4 and IPv6 by

sending DNS A requests with genuine source IP addresses of the scanner. To avoid tem-

poral changes, we send a non-spoofed query just after the spoofed one to the same host.

The format of a non-spoofed query is almost the same as the spoofed one. The only dif-

ference is the scan identifier (n1 referring to a non-spoofed scan identifier instead of s1):

qGPDBe.02ae52c7.n1.v4.drakkardnsv4.com, qGPDBe.long int(ipv6).n1.v6.drakkardnsv6.com.

If we receive a non-spoofed request on our authoritative nameservers, it means that

we have reached an open resolver. Moreover, if this open resolver did not resolve the

spoofed query, we infer the presence of inbound SAV either in transit or at the

tested network edge.

3.4.4 Identifying Dual-Stack Candidates

To compare the level of SAV deployment over IPv4 and IPv6 at the machine level,

we need to collect (IPv4, IPv6) address pairs likely belonging to the same physical

machine. We do so by deploying two-level DNS zones as shown on Figure 3.2. We set

up zone files for two domains (drakkardnsv4.com and drakkardnsv6.com) on two distinct

machines configured with both IPv4 and IPv6 addresses.

For each domain, we configure an authoritative name server with only one glue

record (i.e., IP address of the name server) via the registrar control panel: the IPv4
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address for drakkardnsv4.com and the IPv6 address for drakkardnsv6.com. For exam-

ple, for drakkardnsv4.com, we configure the ns1.drakkardnsv4.com authoritative name-

server and the corresponding glue record (e.g., ns1.drakkardnsv4.com A 5.6.7.8). For

drakkardnsv6.com, we set up the ns1.drakkardnsv6.com authoritative nameserver and

the corresponding glue record (e.g., ns1.drakkardnsv6.com AAAA 2001::6). Thus, on the

DNS level, each nameserver can only be reached over one network layer protocol (IPv4

or IPv6) but not over both.

Similarly, two more nameservers host child DNS zones: v4.drakkardnsv4.com and

v6.drakkardnsv6.com also reachable over only IPv4 and IPv6, respectively. They are the

domain names we use for IPv4 (Section 3.4.1) and IPv6 (Section 3.4.2) scans. We also

add two more child zones: i) v4.drakkardnsv6.com with the ns1.v4.drakkardnsv6.com

authoritative nameserver and the IPv4 glue record added to the parent drakkardnsv6.com

zone and ii) v6.drakkardnsv4.com with the ns1.v6.drakkardnsv4.com authoritative name-

server and the IPv6 glue record added to the parent drakkardnsv4.com zone.

Figure 3.3 shows how a recursive resolver (on the left) resolves the following domain

name: qgPDBe.01020304.nf.s1.v6.drakkardnsv4.com. We assume that it previously ob-

tained the IPv4 address of the authoritative nameserver ns1.drakkardnsv4.com for the

drakkardnsv4.com domain. It contacts the nameserver over IPv4 asking for the A record

of the queried domain name. The ns1.drakkardnsv4.com nameserver cannot directly

provide the answer. Instead, it points the resolver to the ns1.v6.drakkardnsv4.com

nameserver that has only the configured AAAA glue record (the IPv6 address). The re-

solver now has to contact the nameserver only reachable via the IPv6 address. In our

example, the resolver with the 2001::4 IPv6 address sends the DNS A query to 2001::8

and finally, receives the response on its IPv6 address.

As explained in Section 3.4.1, we deal with two types of DNS resolvers: forwarders

and non-forwarders. Forwarders are likely to be a part of a complex DNS infrastructure,

not visible from our authoritative nameservers, which includes, but is not limited to,

load balancing and DNS cache sharing [116]. Thus, non-forwarders are good candidates

for dual-stack testing. Even if IPv4 non-forwarders may forward IPv6 requests (or the

other way around), we consider them better sibling candidates.

During the spoofing scan (IPv4 or IPv6), we continuously process traffic captures

from our nameservers. It is crucial to do it on-the-fly to avoid temporal changes such as

IP address churn [136]. When we find non-forwarders, we send them requests with such

52



Chapter 3. The Closed Resolver Project: Measuring the Deployment of Inbound
Source Address Validation

Figure 3.3: Domain name resolution that requires switching from IPv4 to IPv6. The
local resolver on the left-hand side contacts the ns1.drakkardnsv4.com nameserver over
IPv4. It does not receive the answer to the A request directly, but rather a referral to
the ns1.v6.drakkardnsv4.com nameserver only reachable over IPv6.

domains that imply switching to the other version of IP. The domain name formats

for IPv4 and IPv6 non-forwarders are: qgPDBe.02ae52c7.nf.s1.v6.drakkardnsv4.com

qgPDBe.long int(ipv6).nf.s1.v4.drakkardnsv6.com. We also send similar queries to the

remaining IPv4 resolvers (forwarders and sources of queries), but exclude the nf part

from the domain name. In this way, apart from identifying dual-stack candidates, we

learn more IPv6 addresses in addition to the IPv6 Hitlist Service [119].

The second round of the capture analysis yields the requests containing the pre-

sented domain names. We retrieve the source IP and the domain-encoded address from

non-forwarding requests to form an (IPv4, IPv6) sibling candidate pair. We only use the

requests coming from forwarding IPv4 resolvers to reveal IPv6 addresses then scanned

as described in Section 3.4.2.

3.4.5 Fingerprinting

We have performed a preliminary measurement campaign and gathered 1 K candidate

pairs. We have scanned all the addresses with nmap3 for 1 K most common ports [137].

Our candidates had open services on ports: 22 (SSH), 53 (DNS), 80 (HTTP), 443

(HTTPS), and 587 (SMTP). We also scanned for port 123 (NTP), as NTP is a proto-

col commonly used to amplify DDoS attacks [103] [104], and found that more than 10%

3https://nmap.org/
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of addresses had port 123 open. Open ports may reveal the running software version,

underlying operating system, and other information, such as public keys and certifi-

cates. However, we consider the fraction of the remaining open ports negligible and not

suitable for fingerprinting. Thus, we have deployed the following technique to gather the

evidence whether the (IPv4, IPv6) sibling candidate pair belongs to the same physical

machine.

DNS: A pointer (PTR) resource record (or reverse DNS record) is the mapping

between an IP address and a domain name. It is a recommended practice to have a

hostname configured for every IP address [138]. Nevertheless, it was shown that only 1.2

billion responsive IPv4 addresses (28.17% of the whole IPv4 space) have an associated

PTR record [139]. We perform reverse DNS lookups for a given (IPv4, IPv6) sibling

candidate pair and check for an exact match between returned domain names as it is

common for shared host names to represent a single machine [116]. Moreover, we query

the sibling candidate pair for the domain name version.bind as a DNS TXT record in

the CHAOS class [140]. Unless explicitly hidden, a DNS resolver replies with the exact

installed software version. The example return values include “9.11.10-RedHat-9.11.10-

1.fc29” or “unbound 1.10.0”. We look for candidate pairs for which the same version is

displayed for both. We ignore the cases when the arbitrary string is returned.

NTP: We fingerprint resolvers over UDP port 123 using the nmap scanner. The

NTP standard [141] specifies a special packet header variable called version that reveals

the running software. We retrieve it using the ntp-info Nmap Scripting Engine (NSE)

[142], which not only returns the NTP server version but also the underlying system

information [116].

SMTP: Port 587 is used for email submission by email clients and servers [143].

An extension to SMTP allows secure communication over the Transport Layer Security

(TLS) protocol [144]. We use openssl tool4 to initiate a connection and to obtain the

server certificate.

HTTP: We use the ZGrab 2.0 application layer scanner5 to get home pages, head-

ers, and certificates for all the remaining protocols [145]. The software initiates a GET

request to the potential web server over HTTP. In case of a successful connection,

there may be an HTTP Server header field with the webserver software version that

we retrieve, examine, and search for an exact match between IPv4 and IPv6 sibling
4https://www.openssl.org/
5https://github.com/zmap/zgrab2
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candidate pair.

HTTPS: Web servers delivering content over the TLS protocol provide more in-

formation about the machine in addition to what we can learn with HTTP. The TLS

specification [146] defines a handshake protocol between the client and the server. The

server responds to the client request with the ServerHello message [147]. We retrieve

the following parameters: cipher suite and server version (the TLS version chosen by

the webserver based on what is proposed by the client). We also check the Certificate

message for the returned certificate and ServerKeyExchange message for the actual used

tls version [116].

SSH: Machines open on port 22 provide us with the SSH software version, the

server public key fingerprint, and the length of the key [116].

3.4.6 Network Granularity Levels for Evaluation

Each request received on our authoritative name server reveals the IP address of the

original target of the query that we can associate with the longest matching BGP

prefix and its ASN as it appears in the RouteViews data [114]. For a more fine-grained

analysis, we consider /24 IPv4 and /40 IPv6 networks. This granularity leads to the

evaluation of SAV deployment at different levels:

• Autonomous systems: the proposed method does not allow to determine if an

entire AS is vulnerable to inbound IP spoofing. However, we can conclude that

an AS contains at least one network that does not deploy inbound SAV. We

compare SAV deployment for IPv4 and IPv6 as autonomous systems are known

to contain both types of networks [148].

• Longest matching BGP prefixes: as the provider ASes may sub-allocate their

address space to customers by prefix delegation [149], the longest matching prefix

is another commonly used unit of analysis [121,127].

• /24 (IPv4) and /40 (IPv6) networks: they are the smallest units for evaluating

SAV deployment by the existing methods [108,121].

• Individual hosts: dual-stacked resolvers may have different security policies in

IPv4 and IPv6 parts and, consequently, different packet filtering rules [116].
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Table 3.2: Types of discovered DNS resolvers

# scanned Total DNS Closed resolvers Open resolvers Open resolvers
hosts resolvers in networks in networks in networks

without iSAV without iSAV with iSAV

IPv4 2,831,160,434 7,871,673 2,522,869 3,970,827 1,377,977

IPv6 270,703,379 115,610 99,718 8,977 6,915

3.4.7 Limitations

Our approach has some limitations that may impact the accuracy of the results. We

rely on the main assumption—the presence of an (open or closed) DNS resolver or

a forwarder in a tested network. If there is no DNS resolver, we cannot conclude on

the filtering policies. If the probed resolver is closed, our method only concludes that

the network does not perform SAV for inbound traffic, at least for some part of its IP

address space. Only the presence of an open DNS resolver may reveal the inbound SAV

presence assuming that the transit networks do not deploy SAV.

Transit networks with SAV may influence the measurement results by eliminating

the possibility of detecting spoofing vulnerability at the network under measurement:

if some transit networks filter spoofed probes, this means that we will not detect some

target networks not deploying inbound SAV (if only closed resolvers are present) or

we will incorrectly detect some networks as deploying inbound SAV (if open resolvers

are present). However, if our spoofed probes do arrive in the target network, we can

detect the absence of inbound SAV. In this sense, our results are optimistic—in an ideal

measurement setup without SAV in transit networks, we could detect a larger number

of networks vulnerable to inbound spoofing.

Some other reasons may also explain the absence of data for certain IP addresses:

packet losses or temporary network failures.

3.4.8 Ethical Considerations

To make sure that our study follows the ethical rules of network scanning, yet providing

complete results, we have adopted the recommended best practices [89, 150]. For the

IPv4 scan, we aggregate the BGP routing table to eliminate overlapping prefixes. In

this way, we send no more than two DNS A request packets (spoofed and non-spoofed

ones) to every tested host. Due to packet losses, we potentially miss some results, but

we accept this limitation not to disrupt the normal operation of tested networks. In
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Table 3.3: Deployment of inbound SAV

Network Type
Consistent absence of Partial absence of Consistent presence of No data Totalinbound SAV inbound SAV inbound SAV

Count Ratio (%) Count Ratio (%) Count Ratio (%) Count Ratio (%)

IPv4 AS 21,314 31.8 11,441 17.1 2,092 3.1 32,131 48.0 66,978
IPv4 BGP prefixes 152,316 17.9 45,292 5.4 39,341 4.7 609,839 72.0 846,788
IPv4 /24 networks 765,233 6.9 173,239 1.5 266,498 2.4 9,948,051 89.2 11,153,021

IPv6 AS 4,639 24.8 127 0.7 138 0.7 13,806 73.8 18,710
IPv6 BGP prefixes 6,731 8.0 142 0.2 274 0.3 76,526 91.5 83,673
IPv6 /40 networks 7,562 0.02 136 0.0002 2,874 0.006 49,408,039 99.9 49,418,611

addition, we randomize our input list for the scanner so that we do not send consecutive

requests to the same network (apart from two consecutive spoofed and non-spoofed

packets). We spread our scanning activities over 15 days due to limited resources on

the scanning machine (8 vCPUs and 3GB of RAM).

We have set up a website for this project on closedresolver.com and provided all

the queried domains and the fingerprinting server with a description of our project as

well as the contact information if someone wants to exclude her networks from testing.

We have received 9 requests from operators of, among others, /8, /9 and /10 IPv4

networks, who noticed our DNS requests. In total, we excluded 29 M IPv4 addresses

from our futures scans as well as two IPv6 prefixes (/128 and /48). We also exclude

these addresses from our analysis. We do not publicly reveal SAV policies of individual

networks and AS operators. Yet, website visitors can see the results for the network

they connect from.

3.5 Inferring Presence and Absence of SAV

We have been performing spoofing and open resolver scans since July 2019. For the

purpose of this study, we use data from the scan carried out in March 2020, using the

methodology described in Section 3.4.

3.5.1 IPv4 Scan

For the IPv4 scan, we sent two DNS requests (one spoofed and one non-spoofed) to

more than 2.8 billion hosts (we excluded 24 M addresses from the BGP table as a result

of not-to-scan requests, see Section 3.4.8). We captured 10.9 M spoofed and 9.2 M non-

spoofed A requests on our ns1.v4.drakkardnsv4.com authoritative DNS server. Previous

work has shown that DNS resolvers tend to issue repetitive queries due to proactive

caching or premature querying [151]. Thus, we leave unique tuples of the source IP

57



Chapter 3. The Closed Resolver Project: Measuring the Deployment of Inbound
Source Address Validation

address and the domain name, which results in 8.7 M spoofed and 7.5 M non-spoofed

unique requests.

Each A request contains a domain name with hexadecimally encoded IP address

of the original query destination corresponding to a DNS resolver. Table 3.2 presents

the types of DNS resolvers with the IP addresses extracted from the domain names

observed on our authoritative nameserver. In total, we identified 7.9 M unique DNS

resolvers. Spoofed queries revealed 6.5 M resolvers (2.5 M closed and 4 M open) located

inside networks without inbound SAV. 5.3 M open resolvers responded to non-spoofed

queries: 4 M in networks without and 1.4 M in networks with inbound SAV in place as

they dropped the spoofed queries and only resolved the non-spoofed ones.

3.5.2 IPv6 Scan

The IPv6 scan immediately followed the IPv4 experiment. We analyze all the spoofed/non-

spoofed A requests received on our ns1.v6.drakkardnsv6.com authoritative name server.

Our target list is composed of 270 M IPv6 addresses leveraged from the IPv6 Hitlist

Service and our dual-stack scan by traversing from IPv4 to IPv6-only zones as discussed

in Section 3.4.4. On our authoritative nameserver, we received 290 K A requests related

to our initial spoofed DNS queries and 40 K to non-spoofed queries. After filtering out

the duplicate queries, we get 120 K and 23 K unique queries respectively. Importantly,

62 K resolvers were discovered by traversing from IPv4 to IPv6, 76 K from IPv6 hitlist,

whereas 22 K appeared in both groups. The results highlight the added value of the

method to identify IPv6 addresses by sending spoofed requests to dual-stack resolvers

as explained in Section 3.4.4.

Table 3.2 presents the types of IPv6 resolvers. The great majority of 116 K unique

IPv6 DNS resolvers are closed (100 K) and without the proposed spoofing discovery

technique, they are not detectable. Similarly to IPv4, most of the open resolvers come

from networks without inbound SAV in place.

3.5.3 Deployment of Inbound SAV

For each discovered DNS resolver, we associate its IP address with the corresponding

/24 IPv4 (/40 IPv6) network, BGP routing prefix, and the autonomous system number

using pyasn.6 Note that multiple resolvers may belong to a single network/prefix/AS.
6https://pypi.org/project/pyasn/
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We define three types of networks/prefixes/ASes with respect to the deployment of

inbound SAV—they can be characterized by:

• Consistent absence of inbound SAV: all the discovered DNS resolvers inside

a single network/prefix/AS indicate the absence of inbound SAV.

• Partial absence of inbound SAV: some resolvers indicate the absence while

the others indicate the presence of inbound SAV.

• Consistent presence of inbound SAV: all the discovered DNS resolvers indi-

cate the presence of inbound SAV at the edge of the network under measurement

or filtering in transit.

As highlighted before, with the proposed method, we cannot unambiguously as-

certain whether an entire network/prefix/AS is vulnerable to inbound IP spoofing.

However, when reporting the deployment of inbound SAV, we refer to the results of

our measurements, i.e., whether they consistently or partially indicate the absence or

presence of inbound SAV.

Table 3.3 presents the inferred state of the inbound SAV deployment at different

network levels in the IPv4 and IPv6 address spaces. We measured the filtering policies

of 52% of IPv4 (26.2% of IPv6) autonomous systems, 28% of IPv4 (8.5% of IPv6) BGP

routing prefixes, and 10.8% of IPv4 /24 (0.1% of IPv6 /40) networks. The coverage of

the IPv4 address space is naturally bigger than that of IPv6 as we scanned the whole

routable IPv4 address space.

Our measurements indicate that very few of covered networks consistently imple-

ment inbound SAV7 (3.1% of IPv4 and 0.7% of IPv6 ASes, 2.4% of IPv4 /24 and

0.006% of IPv6 /40 networks) and are thus protected from spoofing attacks. Moreover,

our measurements reveal that as many as 48.9% of IPv4 ASes (out of 52% of ASes

for which we collected data) and 25.5% of IPv6 ASes (out of 26.2% of ASes for which

we collected data) are consistently or partially vulnerable to inbound spoofing. Most

of networks for which we obtained measurements show consistent or partial absence of

inbound SAV, whether in the IPv4 (78% for /24 networks) or in the IPv6 (73% for /40

networks) address spaces.

The obtained results set a lower bound on the number of networks suffering from

partial or complete lack of inbound SAV as we do not have measurement data for 48%
7Note that the number of networks deploying inbound SAV include the cases of filtering in transit.
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of IPv4 and 73.8% of IPv6 ASes. Note that the fact that we do not have measurements

for a given network does not necessarily mean that there are no resolvers in that net-

work. It could also mean that the network contains only closed resolvers and spoofed

packets that could reach them are filtered in transit networks. If we presume a uniform

distribution of our measurements, by extrapolating these numbers for the entire IP

address space, we obtain over 94% of IPv4 ASes and 97% of IPv6 ASes with consistent

or partial absence of inbound SAV.

The results also set an upper bound for the networks consistently implementing

inbound SAV. As the reported numbers include the cases of filtering in transit, the

number of networks deploying inbound SAV is actually lower.

3.5.4 Impact of Network Characteristics on SAV Policies

Multiple factors may influence the decision of operators to deploy filtering in their

networks.

We approached thirty providers among personal contacts for which we have mea-

surements and asked their motivation (not) to perform packet filtering. We got replies

from three operators of networks with partial deployment of inbound SAV. One /24

IPv4 network is logically divided into two parts. Some IP addresses belong to virtual ma-

chines and their OpenStack configuration provides inbound and outbound SAV, while

others are physical servers or Internet access subscribers that do not deploy inbound

SAV due to complexity, time, and financial issues. Another network administrator con-

firmed being responsible only for a subset of the /24 IPv4 network, thus having no

control over the other part. Indeed, upstream providers perform route aggregation of

smaller customer networks, maintained by different organizations [128] that possibly

implement different anti-spoofing policies. Finally, one network operator reported that

the whole /24 network had no inbound SAV, so we must have encountered packet losses.

One of the factors correlated with the deployment of inbound filtering policies of an

AS or a network is the size of its IP address space. Previous work has shown that

the size plays an important role in the implementation of SAV for outbound spoofing:

it is unlikely that smaller organizations have the resources and incentives to implement

outbound SAV in their networks [128, 131]. Operators with a larger address space are

more likely to adhere to best current practices and promote routing security (e.g.,

MANRS (Mutually Agreed Norms for Routing Security regulations) [152] members).
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Figure 3.4: Sizes of IPv4 ASes computed based on the number of unique IPv4 addresses
present in the BGP routing table. The cumulative probability shows that ASes with
consistent absence of inbound SAV tend to be smaller than other ASes.
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Figure 3.5: Sizes of the IPv4 longest matching prefixes from the BGP routing table.
Larger prefixes are more likely to suffer from partial absence of inbound SAV.

To be compliant (consistently or at least partially), they would have to implement SAV

on edge routers [131].

Figure 3.4 presents the cumulative distribution of the IPv4 AS sizes (the number of

announced IPv4 addresses in the BGP routing table) with i) consistent absence, ii)

partial absence, and iii) consistent presence of inbound SAV. For example, as

many as 75.3% of consistently vulnerable ASes have 4,096 and fewer IP addresses. For

comparison, 54.2% of consistently non-vulnerable ASes and 48.1% of partially vulner-

able ASes have 4,096 addresses and less. Therefore, the size distribution of ASes with

consistent absence of inbound SAV is driven by smaller ASes as compared to ASes with

consistent presence and partial absence (presence) of inbound SAV. We observe similar

trends for the longest matching BGP prefix sizes (see Figures 3.5 and 3.6). Our results

show similar trends to those found in previous work exploring the relationship between

the size and deployment of SAV for outbound spoofing. A possible explanation for the

observed distributions is that the operators of smaller networks have generally fewer

resources and lower competence to implement SAV in both directions.
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Figure 3.6: Sizes of the IPv6 longest matching prefixes from the BGP routing table.
Prefixes with consistent absence of inbound SAV tend to be the smallest.

We also analyze AS stability in the IPv4 space as one of the factors that may

influence the decision of operators to deploy SAV. If BGP advertisements frequently

change, implementing ACL-based source address filtering becomes more challenging.

We define AS stability as the percentage of prefixes that remain the same compared to

all announced prefixes in September 2019–March 2020 based on weekly BGP announce-

ments [114]. We find that 87% of ASes with consistent presence and 86% of ASes with

consistent absence of inbound SAV advertise exactly the same prefixes, while less ASes

(81%) that partially deploy inbound SAV are stable. The difference in stability between

ASes with the partial absence, consistent presence, and consistent absence of inbound

SAV is not significant. However, the marginal differences do suggest that ASes with

partial absence of inbound SAV are less stable in advertising their IP space and it

miwght be cumbersome to maintain ACL-based filtering.

Another factor in the deployment of SAV is asymmetric routing, particularly for

multi-homed networks. It is important to note that strict filtering policies apply to so-

called single-homed stub ASes that connect to their sole transit provider ASes [122]. The

problem with non-stub or transit providers is that they might have customer ASes that

do not announce all routes to them due to load balancing or fault tolerance [122,153]. It

is less of an issue for inbound spoofing since an AS announcing the prefixes would know

its own IP space. However, if the customer AS has more dynamic policies to announce

prefixes, they may result in inconsistent filtering policies. Therefore, we define another

factor correlated with SAV deployment—the type of AS: stub or non-stub. In

the analysis, we use the Caida AS relationship data for IPv4 addresses [154]. We find

that 95% and 90% of ASes with consistent absence and presence of inbound SAV,

respectively, are stub ASes. We observe that less ASes (77%) with partial absence of
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inbound SAV are stubs. We see that ASes with partial deployment have the largest

ratio (23%) of non-stub ASes than those with consistent presence/absence of inbound

SAV. It is likely that due to peering relationships, non-stub ASes might not know the

IP space of downstream AS and hence cannot deploy SAV.

Finally, we consider the number of interconnections with other ASes, or the number

of edge routers as another factor correlated with SAV deployment. We used the

Caida bdrmapIT dataset to determine the ownership of the routers in ASes [155]. Their

methodology uses traceroute from multiple vantage points, performs alias resolution

for the routers, and infers AS relationship to determine the boundaries of ASes. We

aggregate the number of border routers that link to other ASes for each AS in our

dataset to estimate the number of its edge routers.

ASes use multiple links with upstream providers to avoid a single point of failure.

To configure SAV, they would have to implement filtering policies on multiple routes

near the exit routers. We observe that the average number of edge routers is around

15 (median 3) for ASes with the consistent presence of inbound SAV, while for the

consistent absence, the average number is around 100 (median 5) and for ASes with

partial absence of inbound SAV, it is around 200 (median 10). Please note the significant

difference in the mean and median values for ASes with partial absence and consistent

presence of inbound SAV, which shows that the distribution is skewed by a few ASes

with a large number of edge routers.

We can conclude that ASes consistently vulnerable and non-vulnerable to inbound

spoofing have similar network properties, different from ASes with partial absence of

inbound SAV. The latter are more complex with comparatively larger sizes, with less

AS stability, and with more non-stub ASes and edge routers. In the case of ASes with

consistent absence of inbound SAV, there might be other socio-economic factors at play

rather than the discussed network characteristics, since they are generally similar to

ASes with deployed SAV.

3.5.5 Outbound versus Inbound SAV Policies

3.5.5.1 Network Level

To identify the most deployed type of SAV (inbound or outbound), we need to consider

the networks for which we measure SAV compliance in both directions. We have already

obtained the /24 IPv4 and /40 IPv6 networks with consistent absence and presence of
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inbound SAV (we do not include here the networks with partial absence of inbound

SAV). The goal is to find which of these networks comply to outbound SAV.

The first outbound SAV compliance dataset we use comes from the Spoofer Project.

The Spoofer client sends packets with the IP address of the machine on which it is

running as well as packets with a spoofed source address. The results are anonymized

per /24 IPv4 and /40 IPv6 address blocks. Spoofer identifies four possible states: blocked

(only an unspoofed packet was received, the spoofed packet was blocked), rewritten

(the spoofed packet was received, but its source IP address was changed on the way),

unknown (neither packet was received), received (the spoofed packet was received by

the server).

In March 2020, we collected and aggregated the latest Spoofer data for one month.

We obtained the tests for 3,731 /24 IPv4 and 579 /40 IPv6 networks (we only kept

vulnerable to spoofing (received) and non-vulnerable to spoofing (blocked) networks).

Note that these numbers are much smaller than 8,779 ASes tested by Spoofer since

2015. For the comparison in this section, we only choose the newest tests run around the

same days as our inbound spoofing scan. As a result, the overlap between our inbound

method and Spoofer is 473 /24 IPv4 and 17 /40 IPv6 networks. The minority of those

have consistent filtering in both directions: 91 /24 IPv4 and 3 /40 IPv6 networks have

no filtering in both directions while 77 /24 IPv4 and 2 /40 IPv6 networks implemented

both inbound and outbound SAV. Interestingly, whenever filtering is deployed only in

one direction, it is mostly outbound (59.4% for IPv4 and 70.6% for IPv6).

The next outbound SAV dataset comes from the forwarder-based measurement

technique. We have deployed the method proposed by Mauch [30] to detect the absence

of outbound SAV. We analyze the open resolver scan responses on the machine on which

we run the scanner and we look for the cases in which the responses come from the IP

address in different networks than the ones originally queried [104,131].

We enumerated 446 K IPv4 and 5 IPv6 misbehaving forwarders, originating from

20 K /24 IPv4 and 4 /40 IPv6 vulnerable to outbound spoofing networks. The important

limitation of the forwarder-based method is that it does not identify the presence of

outbound SAV. The overlap with the inbound SAV dataset is 16 K IPv4 and 3 IPv6

networks. All the IPv6 networks had no SAV in both directions. For IPv4, there are

33.2% of networks with no SAV in both directions, whereas most of the IPv4 networks

without outbound SAV (66.8%) deploy inbound SAV.
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Table 3.4: Fingerprinting dual-stack candidate pairs

Protocol/
Applica-
tion

Both
closed

Only
IPv4
open

Only
IPv6
open

Both
open

Same
fingerprint

DNS (version.bind) 16,743 13,081 1,743 50,015 37,338 (45.8%)
DNS (PTR) 11,380 38,104 1,152 30,946 24,004 (29.4%)
NTP 67,009 2,034 2,498 10,041 128 (0.2%)
HTTP 27,406 15,986 3,292 34,898 34,218 (41.9%)
HTTPS 29,106 16,806 675 34,995 22,531 (22.6%)
SSH 33,825 2,055 2,442 43,260 5,622 (6.9%)
SMTP 47,597 10,140 653 23,192 23,060 (28.3%)

Total (unique) 61,313 (75.2%)

3.5.5.2 Autonomous System Level

We now analyze SAV policies for outbound and inbound traffic at the AS level. One of

the most well-known initiatives to improve the security and resilience of the Internet

global routing system is MANRS [152]. At the time of writing, 515 autonomous systems

are its signatories. MANRS strongly encourages its members to implement SAV in

their networks “to prevent packets with an incorrect source IP address from entering

or leaving the network” [152]. However, recent work shows that MANRS members are

not more likely to deploy SAV than the general population [121]. 81 MANRS ASes out

of 515 are vulnerable to outbound spoofing shown by Spoofer and the forwarder-based

datasets. However, as many as 311 ASes are at least partially vulnerable to inbound

spoofing. Therefore, the results suggest that when network operators are familiar with

the concept of SAV, they tend to secure traffic leaving their networks.

3.5.6 SAV Deployment for IPv4 and IPv6

As IPv6 deployment is growing, it becomes an attractive attack target. Individual dual-

stacked machines and networks are generally more open on the IPv6 part [116]. In this

section, we analyze whether dual-stacked networks are more vulnerable to inbound

spoofing using IPv6. We do it at the individual host and AS levels.

3.5.6.1 Individual Host Level

We queried all non-forwarding IPv4 and IPv6 DNS resolvers (either open or closed) for

a domain name requiring switching to IPv6 and IPv4, respectively. Out of 2.6 M IPv4

and 36 K IPv6 non-forwarders, 2.7% and 28.5% had also IPv6 and IPv4 connectivity,

respectively, thus forming (IPv4, IPv6) candidate address pairs. Clearly, due to the
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Table 3.5: Geolocation results

Rank Resolvers (#) Networks, vulnerable to inbound spoofing (#)
Proportion of networks,
vulnerable to inbound

spoofing (%)

Country IPv4 Country IPv6 Country IPv4 Country IPv6 Country IPv4

1 China 1,970,410 USA 22,992 China 260,047 USA 1,319 Kosovo 63.6
2 Brazil 667,036 Germany 13,373 USA 162,259 Brazil 930 Comoros 52.6
3 USA 661,943 Netherlands 11,514 Russia 54,451 Germany 680 Western Sahara 50.0
4 Iran 404,134 Belarus 7,455 Italy 32,026 Netherlands 336 Armenia 49.5
5 India 348,491 Russia 6,410 Brazil 28,836 UK 309 Maldives 39.7
6 Algeria 249,931 China 5,840 Japan 27,890 China 304 Moldova 38.2
7 Russia 224,985 UK 5,151 India 27,426 Russia 289 Niue 37.5
8 Indonesia 222,602 Spain 3,996 Mexico 23,288 Czech Republic 254 Palestine 36.3
9 Italy 105,476 Czech Republic 3,357 UK 16,976 France 223 Afganistan 36.2
10 Argentina 104,850 France 2,837 Indonesia 16,798 Japan 183 Bulgaria 36.0

IPv6 adoption being far from universal [156–158], it is crucial for IPv6 resolvers to be

reachable over IPv4 as well.

We collected 82 K candidate address pairs in total, most of them (72 K) during the

IPv4 scan. DNS resolvers are known to have complex relationships and a single address

can appear in multiple address pairs [132]. However, for our analysis, we consider each

address pair separately.

We fingerprint each address in the pair as described in Section 3.4.5. Table 3.4

presents the results per address pair. Importantly, almost 98.1% of pairs had open

ports for at least one fingerprinted protocol/application. The most largely open finger-

prints are version.bind and SSH, which is consistent with the fact that we deal with

DNS servers requiring remote access. While the NTP port is relatively largely open, we

merely extracted the timestamp in most cases. Only 128 server pairs returned software

and operating system versions. Among pairs with one or more open fingerprinted port,

75.2% have identical signatures in IPv4 and IPv6 for at least one fingerprinted appli-

cation, which increases the confidence that they belong to the same physical machine.

Two of the three network operators that responded to our survey operate dual-stacked

resolvers and they confirmed the correctness of our mappings. In particular, 6 pairs

had the same PTR record and 7 pairs had the same version.bind records (the remaining

pairs had either no record at all or only a record for one address in the pair).

Most of the resolvers in the pairs show the absence or presence of SAV. However,

there are cases in which we have discovered an IPv6 resolver through IPv4, sent a

spoofed and a non-spoofed query, and did not get any results. We observe similar

behavior in the opposite direction. From 61 K seemingly dual-stacked pairs, 43 K reveal

the absence or presence of spoofing for IPv4 and IPv6. Most of them (99.2%) have

consistent filtering policies. However, out of the remaining 324 hosts, 195 (60.2%) are

vulnerable to inbound spoofing only over IPv6. Thus, at the individual host level, IPv6
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tends to be slightly more vulnerable than IPv4.

3.5.6.2 Autonomous System Level

Whenever a certain security policy exists for an individual dual-stacked host, it is likely

to hold for the whole autonomous system [116]. Consequently, we expect inbound SAV

to be less deployed over IPv6 at the AS level as well. As of March 2020, there are 66,978

IPv4 and 18,710 IPv6 ASNs present in BGP routing tables. 18,016 of them advertise

both IPv4 and IPv6 prefixes.

For this analysis, we choose vulnerable and non-vulnerable to inbound spoofing ASes

and keep those having results for both IPv4 and IPv6. The resulting set includes 2,873

ASes. The great majority of them (94.2%) have consistent filtering policies for IPv4 and

IPv6—2,650 are vulnerable and 55 are non-vulnerable to inbound spoofing. However,

our results indicate that the remaining 168 ASes are not vulnerable to inbound spoofing

over IPv4 (88.7% deployed inbound SAV) but are vulnerable over IPv6. Thus, at the

AS level, SAV for inbound traffic is less deployed over IPv6.

3.6 Geographic Distribution

Identifying the countries that do not comply with the SAV standard is the first step

in mitigating the issue by, for example, contacting local CSIRTs. We use the MaxMind

database8 to map every resolver IP address of the spoofed query retrieved from the

domain name to its country. Table 3.5 summarizes the results.

In total, we identified 232 countries and territories vulnerable to inbound spoofing of

incoming network traffic for either IPv4, IPv6, or both. We first compute the number of

DNS resolvers per country. As explained in Section 3.5.2, the coverage of the IPv6 scan

is smaller than that of IPv4, which is why we see less identified resolvers. Interestingly,

only 3 countries are present in both IPv4 and IPv6 top 10 resolver ranking.

We now map the resolvers to the corresponding /24 IPv4 and /40 IPv6 address

blocks to evaluate the number of vulnerable to inbound spoofing networks per country.

We see that the top 10 countries by the number of DNS resolvers are not the same

as the top 10 for vulnerable to inbound spoofing networks because a large number of

individual DNS resolvers by itself does not indicate how they are distributed across
8https://dev.maxmind.com/geoip/geoip2/geolite2/
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Figure 3.7: Fraction of vulnerable to inbound spoofing (inbound traffic) vs. all /24 IPv4
networks per country (in %)

different networks.

Such absolute numbers are still not representative as countries with a large Internet

infrastructure may have many DNS resolvers and therefore reveal many vulnerable to

inbound spoofing networks that represent a small proportion of the whole. For this

reason, we compute the fraction of vulnerable to inbound spoofing vs. all /24 IPv4

networks per country. To determine the number of all the /24 networks per country,

we map all the individual IPv4 addresses from the BGP routing table to their location,

then to the /24 block, and keep the country/territory to which most addresses of a

given network belong. Figure 3.7 presents the resulting world map. We can see in Table

3.5 that the top 10 ranking has changed. Small countries such as Western Sahara and

Niue that have two and eight identified resolvers each, suffer from a high proportion

of vulnerable to inbound spoofing networks. One of the two /24 networks of Western

Sahara allows inbound spoofing. On the other hand, Bulgaria is a country with a large

Internet infrastructure (16,439 /24 networks in total) and with a large percentage of

vulnerable to inbound spoofing networks.

3.7 Conclusions

In this chapter, we have presented a novel method to infer the deployment of inbound

SAV for the IPv4 and IPv6 address spaces. We have measured the filtering policies of

52% of routable IPv4 autonomous systems (26% for IPv6) and 28% of all the IPv4

BGP prefixes (almost 9% for IPv6). We show that the great majority of the networks

for which we obtained measurements are consistently or partially vulnerable to inbound
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spoofing.

Reflection and amplification DDoS attacks have extensively used open DNS re-

solvers in recent years. We have found 5.3 M IPv4 and 16 K IPv6 open resolvers. New

ways to misuse open resolvers constantly emerge. NXNSAttack, one of the most-recently

discovered attacks, can exploit open recursive resolvers to reach an amplification factor

of up to 1,620. Even worse, inbound spoofing combined with the NXNSAttack results in

additional 2.5 M closed resolvers for IPv4 (100 K for IPv6) either vulnerable themselves

or possibly misused against other victims.

Open resolvers when they do not resolve spoofed queries identify the presence of in-

bound SAV at the edge of the tested network or filtering in transit. We found that while

many providers deploy consistent filtering policies network-wide, there are cases when

a single network is only partially protected from inbound spoofing. The results indicate

that different network characteristics are factors that prevent operators from correctly

configuring packet filtering. Overall, the proportion of non-vulnerable networks is much

lower compared to networks with consistent or partial absence of inbound SAV.

We have identified and fingerprinted dual-stacked DNS resolvers and shown that

at the individual host level, inbound filtering is slightly less deployed for IPv6 than

for IPv4. This observation also holds for dual-stack autonomous systems, which is not

surprising given that the IPv6 address space tends to be less secured than IPv4.

We have gathered different datasets to analyze whether outbound filtering is less

deployed than inbound. Outbound SAV faces the problem of misaligned economic

incentives—it protects other networks but not the one deploying it. Interestingly, SAV

for outbound traffic turned out to be more deployed than inbound at the AS level

among network operators committed to the MANRS initiative. The absence of out-

bound packet filtering gained widespread attention since it enables DDoS attacks. Un-

der these circumstances, inbound SAV remains neglected (or overlooked) by network

operators.

Vulnerability to inbound spoofing is not limited to any geographic territory and is

spread worldwide. To draw attention to the problem of inbound spoofing, we launched

the Closed Resolver Project at https://closedresolver.com in collaboration and funded

by the Dutch CERT—National Cyber Security Centre (NCSC) and RIPE NCC.9 Any-

one can visit the website of the project and check whether his/her network is vulnerable

9https://www.ripe.net/support/cpf/funding-recipients-2020
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to inbound spoofing and how many closed resolvers we found inside. The ultimate ob-

jective is to run notification campaigns for network operators and provide them with an

accessible platform to investigate results for their networks. The service is particularly

useful for operators planning to become a MANRS participant since MANRS strongly

recommends deploying SAV. We expect these efforts will result in better packet filtering

in the Internet.
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4.1 Introduction

Email spoofing consists of sending a message with a forged sender address and other

parts of the email header so that it appears as sent from a legitimate source. Attackers

commonly use this method to mislead the receivers, gain their trust, and eventually,

achieve some malicious goals. Phishing and spam campaigns are examples of attacks

that rely on email spoofing. Despite tremendous efforts deployed to mitigate this tech-

nique, it is still one of the most successful attacks responsible for significant damage.

According to the Internet crime report [159], email spoofing costed US victims more

than 1.2 billion dollars in 2018.

Email spoofing comes in two types. The first one consists of compromising legit-

imate servers and using their mail transfer agent to send spoofed emails to victims

either by specifying a different Reply-to: address or providing a phishing URL in the

body of the message. The second type is domain spoofing in which attackers send

emails on behalf of legitimate domains, e.g., a forged email from account-security-

noreply@accountprotection.microsoft.com impersonating the Microsoft support team

with a fake landing page looking alike a real Microsoft login page to steal user cre-

dentials [160]. In this paper, we investigate the second type of email spoofing.
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The Simple Mail Transfer Protocol (SMTP) for email distribution does not pro-

vide support for preventing spoofing [21]. The system needs to rely on security ex-

tensions such as the Sender Policy Framework (SPF) [22], the DomainKeys Identified

Mail (DKIM) [161], and Domain-based Message Authentication, Reporting, and Con-

formance (DMARC) [23] to authenticate the sender and decide what to do with sus-

picious emails. The extensions define a set of rules that specify who is allowed to send

emails on behalf of a given domain name and how to deal with suspicious messages. A

careful deployment of the extensions can completely mitigate the problem of domain

spoofing. However, to be effective, both the domain owner and the mail transfer agent

of the recipient should implement the extensions: the domain owner needs to correctly

set SPF, DKIM, and DMARC rules, and the recipient has to authenticate incoming

messages and correctly implement the verification of the SPF and DMARC rules.

In this chapter, we evaluate the extent of the SPF and DMARC deployment and

analyze spoofing possibilities enabled by the absence or misconfiguration of their rules.

We do not analyze DKIM as it requires access to the email header selector tag, not

publicly available (see RFC 6376 for more details [161]).

While previous work already investigated the adoption of SPF and DMARC by the

Alexa top-ranked one million domains [162,163], we consider different datasets as well as

threat models. We scan approximately 236 million domain names including generic

top-level domains (gTLD), country-code TLDs (ccTLD) and new gTLDs collected from

different sources such as the Centralized Zone Data Service (CZDS)1 made available

by the Internet Corporation for Assigned Names and Numbers (ICANN), OpenData

project from Rapid72 as well as zone files that are public and available for download

(e.g, .se). The second dataset includes 32,042 high-profile domains of 139 countries

and their defensive domain registrations. The high-profile domains correspond to

most popular targets of email spoofing: well-known companies, governmental websites,

or financial institutions. To the best of our knowledge, this is the first study reporting

on the global-scale measurement of the adoption of email authentication extensions.

We investigate the global adoption of SPF and DMARC protocols by scanning each

domain in our datasets. Then, we define a threat model in which attackers use subdo-

mains (both existent and non-existent) for email spoofing. We also identify defensively

registered domains and evaluate their adoption of email anti-spoofing schemes. We show
1https://czds.icann.org
2https://opendata.rapid7.com
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that even if defensive registrations can mitigate some types of attacks like cybersquatting

and brand name abuse, these domains need to be protected against domain spoofing as

well.

We extend our previous work [164] and make the following main contributions:

1. we investigate the global adoption of SPF and DMARC for 236 million domain

names of different TLDs,

2. in a separate measurement campaign, we evaluate the adoption of SPF and

DMARC by top 500 most popular domains of 139 countries including local busi-

nesses, national websites, local governments, and financial sectors,

3. we propose a method to find defensively registered domains for top-ranked web-

sites and assess the extent of their adoption of email security extensions,

4. we are the first to measure the extent of SPF and DMARC deployment by the

subdomains of the top-ranked websites to gain better insight into how attackers

can abuse subdomains to send spoofed emails,

5. we show that it is possible to send forged emails from non-existent subdomains

when a DMARC rule is not strict enough regarding subdomains,

6. we demonstrate how syntactically wrong SPF rules may break the trust-based

authentication system of selected email service providers by allowing forged emails

to land in the user inbox,

7. we present a methodology for preventing domain spoofing based on good practices

for managing SPF and DMARC records and analyzing DNS logs,

8. finally, as a proof of concept, we perform an end-to-end email spoofing for sub-

domains of high profile domains with misconfigured SPF and/or DMARC.

To remediate misconfigured SPF rules, we have contacted relevant Computer Se-

curity Incident Response Teams (CSIRTs) responsible for misconfigured domains and

measured the effectiveness of our notifications. To encourage reproducibility, we make

our measurement data available upon request.

The rest of the paper is organized as follows. Section 4.2 provides background on

SPF and DMARC. Section 4.3 specifies possible threat models and introduces our
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MTA

MTA
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Figure 4.1: Email sending and receiving procedure.

approach to generate the datasets and find defensively registered domains. Sections

4.4 presents the analysis of the results for scanned domains and subdomains as well

as for emulation of SPF rules. In Section 4.5, we study the trust-based authentication

issue and Section 4.6 presents a methodology for preventing domain spoofing. Section

4.7 describes our remediation actions. Section 4.8 reviews related work and Section 4.9

concludes the chapter.

4.2 Background on Anti-Spoofing Schemes

To understand the issue of email authentication, we briefly explain the process of mail

delivery. Figure 4.1 shows Bob (sender) who sends legitimate mails to Alice (receiver).

Mallory (attacker) wants to send an email that impersonates Bob to Alice. Mallory

and Bob use their respective servers (mallory.com and bob.com) to send mails. The

Mail Delivery Agent (MDA) on the Alice server delivers two emails with the same

sender address (me@bob.com) but coming from different IP addresses (assuming there

is no spam filtering involved). One mail is from Bob (originated from the 1.2.3.4 IP

address) and the other from Mallory (originated from 5.6.7.8).

An effective anti-spoofing mechanism needs to differentiate the Mallory message

from the legitimate Bob’s mail. The current first lines of defence to protect end-users

from spoofed emails include SPF [22], DKIM [161], and DMARC [23].
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4.2.1 SPF – Sender Policy Framework

SPF is a set of text-form rules in TXT resource records of the Domain Name System

(DNS). SPF specifies a list of servers allowed to send emails on behalf of a specific do-

main. During mail delivery over the SMTP protocol, the recipient server authenticates

the sender Mail Transfer Agent (MTA) using a given HELO or MAIL FROM identity based

on the published SPF record and the IP address of the sender—SPF needs to contain

the domain portion of the MAIL FROM identity. In our example, the Alice server gets the

TXT records of the bob.com domain from DNS. Then, it checks whether the sender IP

address is on the list of IP addresses allowed to send emails from the bob.com domain

and decides whether the message should be rejected or delivered to Alice.

The decision is made by the check host function described in RFC 7208 [22] that

takes three arguments on input (IP address of the sender, the domain, the MAIL FROM

or HELO identity) and returns one of the seven possible results shown in Table 4.1. The

third column of the table presents the actions recommended by RFC 7208.

Below, we review the most common SPF rules useful for understanding the threat

models presented in the next section (see RFC 7208 for more details). A valid SPF

version 1 record must begin with string v=spf1 followed by other SPF mechanisms,

qualifiers, and modifiers. Mechanisms describe the set of mail servers for a domain and

can be prefixed with one of four qualifiers: + (Pass), - (Fail), ∼ (SoftFail), ? (Neutral).

If a mechanism results in a match, its qualifier value is used. Pass (i.e., +) is the default

qualifier.

The most common SPF mechanisms are the following:

• ip4 and ip6 – they specify an address or a set of IPv4 (or IPv6) addresses to

match by the check host function with respect to the sender IP address.

• a and mx – they tell the check host function to perform first a DNS lookup for

A (or MX) records of a given domain and then compare the returned IP addresses

with the IP address of the sender.

• exists – it indicates a DNS domain name used for a DNS A query. If the query

returns any A record, this mechanism matches.

• include – it tells the check host function to include the SPF rule of another

domain in the evaluation, which may result in calling the check host function
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Table 4.1: Possible results of the SPF check host function and their definitions.

Result Definition Recommended action

None

1. No valid domain name was ex-
tracted from the SMTP session.

2. No SPF record was retrieved from
the domain name.

1. The action must be the
same as the Neutral out-
put.

Neutral
1. There is no definite assertion (au-

thorized or not) about the sender.
1. Depends on the receiver sys-

tem.

Pass
1. Client is authorized to send

emails with the given identity.
1. Whitelist the domain in

terms of SPF.

Fail
1. Client is not authorized to send

emails with the given identity.

1. Depends on the receiver sys-
tem.

2. Make decision based on the
DMARC policy.

Softfail

1. Client is not authorized to send
emails with the given identity.

2. No strong policy specified by the
domain owner.

1. Receiver should not reject
the message.

2. May mark the message as
suspicious.

Temperror 1. A temporary error occurred dur-
ing retrieving the SPF policy.

1. May defer the message.

2. May deliver the message and
mark it.

Permerror 1. Parsing problem in published
SPF.

1. May deliver the message and
mark it.

recursively to fetch and analyze the SPF records of the included domains.

• all – it always matches, so its corresponding qualifier results in the final decision.

For example, v=spf1 mx -all means: allow MX servers of the domain to send mail

and prohibit all others.

The final result of the mechanisms could be Match, No match, or Exception. Qualifiers

combined with mechanisms, generate the final input for the check host function that

evaluates the SPF rule.
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Modifiers provide additional information about the SPF records, for instance:

• redirect=another-domain – the SPF record for another-domain replaces the cur-

rent record. The redirected domain becomes the target of all DNS queries and

evaluations instead of the original domain.

Let us consider the following example:

v=spf1 a ip4:1.2.3.0/24 -all

when the A record example.com A 6.7.8.9 is stored in DNS. The SPF rule states that

only machines with the IP address of 6.7.8.9 (the a mechanism) or with the IP address

in the range of 1.2.3.0...255 (the ip4 mechanism) are permitted senders (all others are

forbidden). However, by only changing -all to +all, any machine is permitted to send

emails on behalf of the domain example.com with the successful SPF Pass result.

4.2.2 DMARC

DMARC [23] builds on top of SPF and DKIM by explicitly stating the policies to

apply to the results of SPF and DKIM. In particular, DMARC binds names checked

by SPF with what is listed in the FROM: field of the mail header by means of alignment,

which expresses the fact that these domain names should match (or partially match

when using a relaxed setup). For instance, DMARC checks whether the name in the

MAIL FROM SMTP command and the FROM: field of the mail header match or not. In

the case of the alignment test failure, a DMARC policy can specify what to do with

the message (accept, reject, or quarantine) and where to send reports in case of a

mismatch. For a given domain name domain.tld, the DMARC policy is stored in the

TXT record of dmarc.domain.tld. Below, we present selected tags of DMARC that, when

misconfigured, can be exploited by an adversary.

• aspf (Alignment mode for SPF) – it specifies whether the strict (s value) or

relaxed (r value) alignment mode is required by the domain owner. The default

value is the relaxed mode. In the strict mode, the domain name used in SPF must

be the same as the domain used in the FROM: field of the header. In the relaxed

mode, any subdomain of the domain can be used in the FROM: field of the header

and will result in Pass.

• p (Policy) – it specifies the action to be taken by the receiver if the alignment

test results in Fail. Possible values for this tag are: 1) none – no specific action,
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2) quarantine – the message is suspicious and depending on the mail system of

the recipient, it could be delivered as spam, 3) reject – the domain owner wishes

to reject emails during the SMTP transaction that fail the alignment test.

• ruf (Reporting URI for failure) – it specifies the email addresses to which message-

specific failure information is to be reported. This tag is important since this is

the only bridge between the receivers and the true domain owners to fight spam

emails [165].

• sp (Subdomain policy) – it has the same syntax as p but applies to subdomains

of the domain name. In the absence of this tag, the policy of the p tag must be

applied to all subdomains [23]. If subdomains are not used to send emails, the

owner can set this tag to the reject value to prevent subdomain email spoofing.

Let us assume that the DMARC rule of the domain example.com is v=DMARC1;

p=none; aspf=r;. If we have the previously mentioned SPF rule for this domain, an ille-

gal sender with the IP address of 9.10.11.12 can forge emails on behalf of example.com

or any (existent or non-existent) subdomain of example.com, and the delivery decision is

up to the receiver since no strict rule has been specified in DMARC. However, changing

the DMARC rule to v=DMARC1; p=quarantine; sp=reject; aspf=s; tells the receiver to

label all the emails that did not pass the SPF evaluation as spam and reject all the

emails from the subdomains of example.com at the SMTP level.

4.2.3 Threat Models

We now consider threats regarding SPF and DMARC in detail. To mitigate mail spoof-

ing, domain owners set up SPF and DMARC rules then used by inbound mail servers.

Therefore, if the recipient MTA does not support the SPF or DMARC check, no matter

how strict the rules are, they will not be effective. A misconfigured SPF or DMARC

(either syntactically or semantically) rule is as dangerous as the absence of the rules

since the output of the evaluation does not lead to a correct decision.

We consider three possible types of threats:

• Related to domain names. If a domain uses a misconfigured SPF rule, then it

is possible to send forged emails from any IP address with the SPF Pass result.

For example, we have discovered that microsoft.com.tr used the +all mechanism
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in its SPF rule, which made it easy for attackers to send forged emails on behalf

of Microsoft from any IP address. Note that after notifying Microsoft, the issue

was fixed.

• Related to subdomains. Each subdomain should have its own SPF and DMARC

rules. Another possibility is to use the sp tag in DMARC of the domain name

(lower-level domain) to explicitly specify the action to take when receiving mes-

sages from subdomains. A possible abuse of subdomains is the following:

– If a subdomain has no SPF rule (and there is no specified wildcard rule) and

no explicit DMARC action, then it is possible to misuse the subdomain for

sending forged emails. For example, while icann.org has a strict SPF rule,

there is no rule specified in account.icann.org and no DMARC policy re-

garding subdomains (also the default action for domains is none, which in this

case applies to subdomains). Hence, it is possible to send emails with forged

sender addresses (e.g., support@account.icann.org) with the SPF Neutral

result.

– If a subdomain does not exist, the result of the DNS query for the TXT record

returns a name error (NXDOMAIN). Thus, the check host function returns

the None result (see Table 4.1). If there is no wildcard TXT record that

covers non-existing subdomains and there is no DMARC policy specified for

subdomains and the domain itself, then again, it is possible to send spoofed

emails.

• Wrong SPF rules. If the check host function cannot evaluate the existing SPF

record of a domain name because of a syntax error, then the result is either

Temperror or Permerror, and a legitimate email will likely arrive in the spam

box. However, when the user marks this email as safe, the mail service may

also accept spoofed emails from other IP addresses. We show in Section 4.5 how

syntactically wrong SPF rules may break the trust-based authentication system

of email service providers by allowing forged emails to land in the user inbox.
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Figure 4.2: Generating the list of defensively registered domains.

4.3 Methodology for analyzing SPF and DMARC deploy-

ment

In this section, we describe the methodology for analyzing the deployment of SPF

and DMARC. We start with three datasets to perform two different measurements:

in one campaign, we use a dataset of approximately 236 million domains from various

resources to measure the global adoption of SPF and DMARC. In the second campaign,

we use top 500 domains of 139 countries from the Alexa list [166] and online banking

systems for all countries provided by FONDY.3 In the second campaign, our focus is

on high-profile domains (well-known companies, governmental websites, and financial

institutions) and their defensive domain registrations.

4.3.1 Global Measurements

Regarding the global scan of domains for SPF and DMARC, we collected approxi-

mately 333 million domains from open zone files, OpenData project of Rapid7, and all

the available zone files in Centralized Zone Data Service (CZDS) offered by ICANN. Our

data consist of all domains with .com, .net, .org, .biz legacy generic TLDs (gTLDs),

approximately 1,100 new gTLDs, .se and .nu country-code TLD (ccTLDs), operated

by the Internet Foundation in Sweden, and samples of other domains obtained from

Rapid7. Then, we scanned all the domains for A resource record using the ZDNS4

scanner from the ZMap project [167] to keep only alive ones. Finally, our dataset con-

sists of 235,960,991 active domain names in total. We performed the measurement in

September 2020.

3https://fondy.eu
4https://github.com/zmap/zdns
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4.3.2 Top 500 Websites of All Countries

The Alexa website ranging system provides top 500 lists of most visited websites for

139 countries, which we collect for the purpose of this study as high-profile domains.

Previous work [163,168] used the Alexa top 1 million domains. However, we are inter-

ested in specific domains that may not be in the top 1M global popularity list but in

the top list of each country, e.g., government websites or national businesses. In total,

we collect 69,500 fully qualified domain names (FQDNs), which lead to 32,042 unique

domains. Domain names are defined as 2nd–level, or lower-level if a given TLD operator

provides such registrations, e.g., example.br or example.com.br [169]. We use a modified

version of the public suffix list maintained by Mozilla5 to get domains from FQDNs.

For the purpose of this study, we exclude all private TLDs such as s3.amazonaws.com

or blogspot.com. The dataset consists of 14,084 domains with legacy gTLDs, 1,070 do-

mains with new gTLDs, and 14,084 domains with country-code TLDs. We refer to this

list as the TOP500 list.

4.3.3 Defensive Registrations

Defensive registration refers to the process of registering domain names (often across

multiple TLDs) with different grammatical formats to protect brands from attacks like

typo-squatting [170]. For example, the brand.com company may register brand.net and

brand.org, then redirect them to the original website. Figure 4.2 shows the algorithm to

generate their list. We use the following steps to generate defensively registered names

using the names in the TOP500 list:

• For each domain name in the TOP500 list, we generate the domain names over

all the possible TLDs including new gTLDs, legacy gTLDs, and ccTLDs. For

example, for paypal.com, we generate paypal.tld where tld refers to all the

ccTLDs (e.g, paypal.in), legacy gTLDs (e.g., paypal.net), and new gTLDs (e.g.,

paypal.support).

• For each domain in the TOP500 list that uses country code TLD or legacy gTLD,

we generate *-squatting domains (for *-squatting, we use insertion, deletion, sub-

stitution, and internationalized domain names using DNSTwist package6). We
5https://publicsuffix.org
6https://pypi.org/project/dnstwist/
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generate 145,250,849 unique domain names.

• We scan all generated domains for TXT records with ZDNS. By excluding all DNS

error results (e.g., NXDOMAIN, TIMEOUT, and SERVFAIL), we end up with

1,185,167 unique domains. Then, we extract the defensively registered domains

based on the following three conditions:

1. IP address in the requested A record of the domain is the same as for the A

record of at least one corresponding domain in the TOP500 list,

2. authoritative name server in the NS record of the domain is the same as in

the NS record of at least one corresponding domain in the TOP500 list,

3. domain part of the automatically visited domain homepage URL is the same

as one domain in the TOP500 list, and the list reduces to 235,508 domains.

• Some of the domains in the list are related to web trackers [171] and parked

domains. For parked domains, we exclude them using the method proposed by

Vissers et al. [172], whereas for web trackers and advertising domains, we exclude

them by using the Mozilla blacklist for trackers [173].

Our final list contains 55,059 defensively registered domains. For example, we find

226 domain names either registered by Google Inc. for google.com or by MarkMonitor7

on behalf of Google, and 201 domain names related to PayPal Inc.

4.3.4 Subdomain Enumeration

We have generated the list of known subdomains for each entry of the TOP500 list

using the Spyse8 API. We only consider ‘first-level’ subdomains and exclude www and

name servers since it is more likely thet attackers use a first-level subdomain for sending

spoofed email since it looks more legitimate. In total, we generate 212,361 subdomains

for domains in the TOP500 list.

4.3.5 Banks and Financial Websites

For banking and financial websites, we leverage a list of 7,022 domains from the FONDY

Github repository9 and generate 39,310 subdomains using the same method as de-
7https://markmonitor.com
8https://spyse.com
9https://github.com/cloudipsp/all banks ips
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scribed in the previous section.

4.4 Results on SPF and DMARC Adoption

After collecting all the datasets, we perform three types of scans for all domains and

subdomains: 1) find TXT records to extract SPF rules, 2) find TXT records by prepending

dmarc to the domains and subdomains (i.e., dmarc.domain.tld) to retrieve DMARC

rules, and 3) analyze SPF and DMARC rules by emulating the check host function [174]

using our server IP address as the IP address of the sender (without actually sending

emails).

In this section, we present the results of the first two scans for SPF and DMARC

rules at each domain and its subdomains.

4.4.1 Global Scan of the SPF and DMARC Rules

As the result of scanning 236 million domain names, we find that only 73,833,342

domains have SPF records set, which is approximately 31% of all domains. The com-

parison of the obtained results with the scanning results of the top 1M domains in the

Alexa list performed by Hu et al. [163] with 44.9% SPF adoption rate, shows that the

global adoption of SPF is approximately 13.9% lower than in the Alexa top 1M do-

mains. We expected this result because Alexa top 1M domain names are more valuable

and well-established in terms of DNS resource records, and therefore, they do not give

a representative overall picture of the global SPF deployment.

Regarding DMARC, only 310,185 out of 236 million domains have DMARC corre-

sponding to approximately 0.13% of the population. For the domains with a DMARC

rule, 41% of them have p=reject, 9.3% have p=quarantine, and 39.6% have p=none rule.

These figures are also far different from the 5.1% of the domain names in the Alexa top

1M domains with DMARC rules [163], which again confirms that more popular domain

names deploy email anti-spoofing schemes on a wider scale.

4.4.2 High-Profile Domains and Defensive Registrations

Tables 4.2 and 4.3 present the results of the scans using ZDNS to retrieve SPF and

DMARC rules. Columns contain the following information: ‘norecord’ – domains exist

but there is no SPF rule in the TXT record of the domains, ‘noerror’ – the record exists
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Table 4.2: Scan results for SPF rules.

dataset total norecord (%) noerror (%) servfail (%) nxdomain (%) timeout (%)
TOP500 domains 32,017 29.88 65.92 0.23 0.18 3.78

TOP500 subdomains 212,361 76.15 5.77 0.1 16.31 1.68
Bank domains 7,022 22.39 64.95 1.28 2.75 8.63

Bank subdomains 39,310 70.34 3.53 0.09 22.96 3.09
Defensive domains 55,095 1.2 95.37 0.43 1.03 1.97

Table 4.3: Scan results for DMARC rules.

dataset total noerror (%) servfail (%) nxdomain (%) timeout (%)
TOP500 domains 32,017 34.32 0.24 63.44 2.0

TOP500 subdomains 212,361 12.61 0.36 82.95 4.09
Bank domains 7,022 35.86 1.21 52.32 10.61

Bank subdomains 39,310 7.95 0.55 87.92 3.58
Defensive domains 55,095 40.08 0.36 57.86 1.7

and can be retrieved successfully, ‘servfail’ – DNS lookup failure, ‘nxdomain’ – the

domain name does not exist in the zone file, ‘timeout’ – the DNS timeout error. For

DMARC, the ‘nxdomain’ column is the same as ‘norecord’ column for SPF (if we get

‘NXDOMAIN’ answer to the DNS query for dmarc.domain.tld, it means that dmarc

subdomain does not exist so there is no DMARC rule).

We can notice in Table 4.2 that 29.9% of the domains in the TOP500 list and

22.4% of the online banking domains do not have SPF rules at all. As the check host

function for the domains without SPF rules returns None (see Table 4.1), it is up to

the receiver of the email to decide on whether to deliver a message and/or mark it

as suspicious or not. While this behavior can be acceptable for regular domains, it is

insecure for transactional domains (e.g., banking domains) as well as for high-profile

domains (e.g., domains in the TOP500 list).

For defensively registered domains, Table 4.2 shows that only 1.2% of them have

no SPF rules, which is significantly lower than the results for TOP500 and banking

domains. However, evaluating SPF alone is not sufficient since it is up to DMARC

policies to make the final decisions about the delivery of messages.

As shown in Table 4.3, as many as 63.4% and 52.3% of TOP500 and banking

domains have no DMARC rule, which means that even with correctly configured SPF

rules, it is still possible to spoof emails. Furthermore, for the domains with a DMARC

rule in place (34.3% and 35.9% for TOP500 and banking domains, respectively), we
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have observed that a large part of them have the tag p equal to none (60% and 53.8%,

respectively, not shown in the table), which make them prone to email spoofing as well.

For defensively registered domains (see Table 4.3), 57.9% of them do not have a

DMARC rule, which means that it is possible to send spoofed emails. Among 40.1% of

the domains with a DMARC rule, 26.7% have the p tag equal to none and 65% have

the p tag set to reject, which makes them bulletproof from domain spoofing at the

SMTP level.

Overall, we expect much wider deployment of SPF and stricter DMARC rules for

defensively registered domains in comparison to high-profile domains—if organizations

decide to register domains defensively to avoid domain name abuse, they are also more

likely to configure the appropriate SPF and DMARC rules.

4.4.3 Analysis of Spoofing Possibilities for Subdomains

Regarding subdomains, the results are worse since 76.1% of the subdomains related to

the domains in the TOP500 list and 70% of the subdomains related to banking websites

do not have SPF records at all (see Table 4.2). While it is not dangerous in itself,

the absence of strict DMARC rules for subdomains makes them prone to subdomain

spoofing. To mitigate this vulnerability, domains need to provide appropriate DMARC

rules. The sp tag (or p tag in the absence of sp) in a DMARC rule specifies the default

action to be taken upon receiving messages from subdomains with no SPF rule [23].

Table 4.4 shows the DMARC results for subdomains without SPF rules in both

TOP500 and banking website lists. To obtain this result, we first scan dmarc.sub.domain.tld

to extract a p tag from each subdomain and in case of no DMARC rule in the sub-

domain, we scan dmarc.domain.tld for sp or (in the case of its absence) p tags and

apply the rule to subdomains (cf. RFC 7489 for more details [23]). In Table 4.4, none,

reject, and quarantine columns correspond to the extracted rules as explained in Sec-

tion 4.2.2. The ‘invalid rule’ column refers to the rules that do not follow the syntax

specified in RFC 7489 and ‘no-DMARC’ column corresponds to the domains without

DMARC rules in subdomains nor in the domain name. Note that sending emails from a

subdomain of any domain with ‘no-DMARC’ (67.1% for TOP500 and 68.9% for bank-

ing websites), with none rule (19.7% for TOP500 and 17.5% for banking websites),

and ‘invalid-rule’ (less than 0.1% in both cases), regardless of the fact if the subdomain

exists or not (non-existing subdomains), does not result in a strict reject decision. This

85



Chapter 4. Adoption of Email Anti-Spoofing Schemes: Large Scale Analysis

Table 4.4: Specified DMARC action for subdomains with no SPF rule in the TXT resource
record.

data total no-DMARC none reject quarantine invalid rule
TOP500-sub-no-SPF 161,720 108,535 (67.1%) 32,008 (19.7%) 13,286 (8.21%) 7,803 (4.82%) 88 (0.05%)

Bank-sub-no-SPF 27,650 19,070 (68.9%) 4,849 (17.5%) 2,682 (9.6%) 1,023 (3.69%) 26 (0.09%)

Table 4.5: Result of the SPF check host emulation.

Result TOP500 bank defensive bank subdomains TOP500 subdomains
None 10,106 1,956 1,441 37,149 198,615

Neutral 1,497 236 6,220 56 683
Pass 50 10 114 2 37
Fail 7,083 2,268 22,255 860 4,511

Softfail 10,617 1,591 21,804 354 6,019
Temperror 135 155 523 778 1,485
Permerror 2,529 806 2,738 111 1,011

Total 32,017 7,022 55,095 39,310 212,361

behavior is potentially dangerous for transactional domains as it is possible to send

emails with forged sender address using subdomains with no SPF record for as many

as approximately 87% of TOP500 and banking domains.

4.4.4 SPF Emulation Results

To analyze the validity of SPF rules using the check host function further, we take

advantage of pyspf [174] with our server IP address as the IP address of the mail

sender. pyspf evaluates the SPF rule for a given domain and returns the SPF result.

For the global scan of SPF and DMARC, 213,112 out of 73,833,342 domains result in

SPF Pass, approximately 0.28% of the domains with SPF records. We also found that

6,199,210 domains (8.3% of the domains with SPF records) result in SPF Permerror.

Regarding the second database, Table 4.5 shows the results of the SPF emulation

(see also Table 4.1 for the definition of each result and the corresponding recommended

action). The reason for the SPF Pass result is either the +all mechanism in the SPF

rule or the possible redirect modifier. Among the defensively registered domain names

with the Pass result (114 domains), we have observed some well-known names like

microsoft.com.tr10 registered by MarkMonitor Inc.7 on behalf of the Microsoft Cor-

poration, as well as some major IT companies, local government, and TV channels
10The issue was fixed after sending notifications.
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Table 4.6: Selected syntactically wrong rules that lead to the Permerror result in SPF.

Error type Example Correct rule Frequency
Too many DNS lookups - SPF rule must generate less than 10 DNS query 4,349,463 (70%)

Two or more SPF records - must set one SPF record for each domain 733,750 (12%)
No valid SPF record for included domain - must set one SPF record for included domains 556,811 (9%)

Unknown mechanism found: all. v=spf1 a mx -all. v=spf1 a mx -all 153,455 (2.5%)
Invalid IP4 address: ip4: ip4:xxx.xxx.xxx.xx?all ip4:xxx.xxx.xxx.xx ?all 72,011 (1.1%)

Empty domain:: a: v=spf1 mx a: -all v=spf1 mx a:example.com -all 18,190 (0.2%)

websites for which we cannot provide the names for security considerations. However,

the emulation results are available upon request.

We have noticed 12 different banking websites (1 in Spain and 11 in the United

States) with the SPF Pass result. Although the number is fairly low, it is still enough

for attackers to conduct a successful attack if they obtain the list of customer emails. In

the TOP500 list for domains and subdomains, we have found 87 records with the SPF

Pass result (50 for domains and 37 for subdomains) including several local government

websites (mostly in the US), national financial websites, and national mobile operators

with thousands of customers.

Table 4.5 shows 7,195 Permerror as the result of the check host function. The

majority of these domains and subdomains have at least one of the following three

problems: i) syntax problem in the published SPF rule (approximately 5,400 records),

ii) excessive number of DNS lookups because of too many recursive include mechanisms

[22] (1,131 records), and iii) published more than one valid SPF records (640 samples).

Table 4.6 shows selected syntactically and semantically wrong published SPF records.

We can observe that not only the syntax is important to parse an SPF record correctly,

but also the number of DNS lookups must be limited to 10 queries based on RFC 7208

(cf. Section 4.6.4). Approximately 91% of the SPF Permerror results are related to only

three types of misconfigurations with a 70% violation in the number of DNS queries,

followed by 12% of domains with more than one SPF record.

The domains and subdomains with Permerror are important because they may

cause serious problems. Since the domains have SPF records, Permerror indicates that

they are used by their owners to send legitimate messages to users. However, emails may

never get delivered or delivered but labeled as spam (based on the action recommended

for Permerror as described in Table 4.1). Importantly, we find that any attempt by

the end user to detach the spam label from the legitimate email may whitelist all the

emails from that domain name with the SPF Permerror result including forged emails

87



Chapter 4. Adoption of Email Anti-Spoofing Schemes: Large Scale Analysis

Table 4.7: Measurements of message delivery to inbox (IN), spambox (SP), or no de-
livery (ND) for five major email service providers.

Threat model Gmail Yahoo Outlook Yandex Laposte
IN SP ND IN SP ND IN SP ND IN SP ND IN SP ND

+all in SPF of domain 10 0 0 8 1 1 6 0 4 10 0 0 6 0 4
Defensive registration 9 1 0 9 1 0 3 7 0 9 1 0 9 0 1

Non-existent subdomain 8 2 0 3 0 7 2 8 0 10 0 0 10 0 0
Existent subdomain 7 3 0 7 2 1 4 6 0 10 0 0 10 0 0

Trust-based authentication issue 7 X X N/A 7

(see Section 4.5).

Moreover, a wrong implementation of the check host function on the receiver with-

out strict limitation of the number of DNS queries, may allow the attacker to put extra

burden on the local recursive DNS resolver, which may lead to a Denial of Service

(DoS) attack against the DNS server, as explained by Scheffler et al. [175]. Among the

domains with syntactically wrong SPF rules, we observe some major IT companies e.g.,

eset.lu, the defensively registered domain for eset.com related to the ESET Internet

Security.10

The SPF emulation results show that for several major IT companies, government

websites, and one of the topmost banking website in the world, it is possible to send

spoofed emails from both existent and non-existent subdomains as well as from some

of their defensively registered domains due to weak or misconfigured SPF or DMARC

rules.

4.4.5 End-to-End Spoofing Measurement

To show the possibility of email spoofing based on the different threat models presented

in Section 4.2.3, we have tested end-to-end email spoofing from well-known brands to

our own registered email addresses at i) Gmail, ii) Yahoo, iii) Outlook, iv) Yandex, and

v) Laposte email services. We follow the same steps as Hu et al. [163] to ensure research

ethics. Table 4.7 shows the test results. We have considered four different possibilities,

namely, a) the SPF record of the domain has +all in its rule set, b) the defensively regis-

tered domain has neither an SPF nor DMARC rule to reject our emails, c) non-existent

subdomains (e.g., accounts.icann.org), and finally, d) an existent subdomain without

proper SPF configuration or a restrictive DMARC rule (e.g., account.icann.org). For

ethical reasons, we do not provide the brand names of high-profile domains on behalf

of which we sent emails, because for some of them, the problem is still unsolved.
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We can observe in Table 4.7 that in the first case (for which there is a +all in the

SPF record), almost all the emails were delivered into the inbox by Gmail, Yahoo, and

Yandex. Outlook and Laposte perform slightly better with 60% inbox delivery and 40%

rejected emails. For the defensively registered domains, except for Outlook (with 70%

delivered into the spam-box), all other email service providers successfully delivered

almost all the sent mails into their inbox. Regarding non-existent subdomains, Outlook

labeled 80% of the emails as spam while Yahoo rejected 70% of them. Other three

services delivered almost all the emails. For the existent subdomain, Outlook performed

the best by labeling 60% of the emails as spam. Surprisingly, Yandex delivered 97.5%

of all sent emails into inbox, the worst performance in terms of the SPF and DMARC

evaluation. The results show that attackers can successfully spoof all the tested email

services by sending emails from non-existent subdomains, if domains do not have a

strict reject DMARC policy.

4.5 Trust-based Authentication Issue

In this section, we show how a syntactically wrong SPF rule in a legitimate domain

can push users to break the trust-based authentication system by labeling a legitimate

email as safe and letting forged emails land in the user inbox. We examine five popular

email providers: Outlook, Yahoo, Gmail, Laposte, and Yandex. We explain the issue

using the Outlook service as an example, but the process is the same for other email

service providers. Table 4.7 presents the summary of results.

First, we register a domain (dnsabuse.xyz), set up a mail server, and the DNS A

record of the domain. We use v=spf1 a aaaa -all as the SPF rule in the TXT record

for our registered domain (i.e., syntactically wrong SPF rule because of a nonexistent

aaaa mechanism to generate the Permerror result). Then, we send a legitimate email

with our server to our outlook.com email address. Since the SPF record is syntactically

wrong and the reputation of our domain is low, the legitimate email lands in the spam

box (as we expect) with the SPF Permerror result. If the user marks the email as

‘safe sender’ (in case of Yahoo, the button label is ‘add sender to contacts’), then the

Outlook service considers this email as safe (a correct assumption as it is a legitimate

email). However, from now on, Outlook (as well as Yahoo) also accepts spoofed emails

from other IP addresses that spoof the domain name.
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Figure 4.3: Methodology for preventing domain spoofing.

We suspect that Yahoo and Outlook services whitelist the sender domain name

instead of their IP addresses. On the other hand, the Laposte service rejects the sender

with SPF Permerror at the SMTP level and sends a bounce message informing the

sender about the reason for rejecting the mail (i.e., syntax error of SPF). We were not

able to evaluate the trust-based authentication for Yandex since both emails (from the

legitimate and illegitimate servers) land in the user inbox. Finally, Gmail does not suffer

from the issue. We assume that when users detach the spam label from a legitimate

email, Gmail only whitelists the IP address instead of the domain name.

4.6 Methodology for Preventing Domain Spoofing

In this section, we present a methodology for preventing domain spoofing elaborated

based on the experience gained in a study of a real-world scenario related to attacks

performed on one of the government financial sectors in a European country. Due to

security and ethical considerations, we do not give the name of the organization nor

the name of the country.

The organization had one official registered domain (with ccTLD) and more than

500 defensively registered domains to protect the official one. In 2019, the domain

administrators realized that a quite considerable number of attacks targeted their or-
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ganization using different attack vectors: i) sending a forged email on behalf of the main

domain, ii) sending emails with the MAIL FROM address of the defensively registered do-

mains, and most importantly iii) sending emails from non-existent subdomains of either

the main domain or defensively registered domains. The main problem was that the

targeted organization had no control over any part of the attack scenarios. They did

not know anything about the sender, which could be the attacker or a compromised

machine sending spoofed emails on behalf of the attackers, nor anything about the

receivers of the emails. Thus, to solve the problem, not only they had to identify the

sender but also inform possible recipients so that they do not accept incoming messages

and potentially send a report related to these emails. Figure 4.3 illustrates the result-

ing methodology for preventing domain spoofing, a combination of good practices for

managing SPF and DMARC records and analyzing DNS logs.

Assume that the IP address of the attacker is 1.2.3.4, the host name used in the

SMTP HELO/EHLO command is helloserver.tld, and the MAIL FROM field used in the

spoofed email is organization.com, the same as the targeted brand. In this scenario,

the SPF rule of the main domain, as well as all the defensively registered domain

names, point to a single subdomain ( spf.organization.com) under the control of the

organization using redirect modifier. When the receiver receives a spoofed email on

behalf of organization.com (or of any defensively registered domain), it asks for the TXT

record, retrieves the SPF rule of the domain (step 1©), and gets the following answer:

v=spf1 redirect= spf.organization.com (step 2©). In step 3©, the receiver again asks

for the SPF record of the specified domain name in the redirect modifier and receives

a macro specified by the exists mechanism (step 4©). The exists mechanism tells the

receiver to create the domain name based on the specified rules and query the generated

domain for the A resource record. The receiver can make the final decision based on

step 6©. If the domain name in step 5© resolves (no matter to which IP address), it

means that the email is legitimate in terms of SPF. However, if the query returns no

result (e.g., NXDOMAIN) not only the SPF will fail but also the DNS server logs the

IP address of the attacker (or the compromised machine used by attacker) as well as

the targeted domain (the main domain of the organization or one of the defensively

registered domains). In addition, the receiver sends an extra TXT query for the DMARC

policy to make the final decision about the received email. By specifying the ruf field

in the DMARC rule, the domain administrators will receive a copy of the rejected
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email (e.g., phishing email) for further forensic analysis both to identify bugs in their

mail software and gain better insight into the possible phishing/spam attacks on their

domains.

After one year of using the methodology to protect the targeted organization, the

results show that this technique can effectively reduce the number of phishing attempts

on the organization, which we can consider as a good practice not only to protect the

brands from phishing/spam attacks that use domain spoofing but also to identify the

malicious email senders.

4.7 Remediation

Notifying the owners of the affected domains with misconfigured or missing SPF and

DMARC rules is highly problematic since there is no straight way to retrieve the con-

tact information of the domain owners [176, 177]. Public availability of the domain

WHOIS data is affected by the introduction of the General Data Protection Regula-

tion (GDPR) and “Temporary Specification for gTLD Registration Data” adopted by

ICANN [178]. It obliges generic TLD registries and registrars to redact the Registrant

and Administrative Contact in the public WHOIS.

Therefore, we decided to perform notifications through the Computer Security In-

cident Response Teams (CSIRTs). We use the following bottom-up approach to send

notifications—we send email notifications if there is a CSIRT responsible for: 1) the

domain name, 2) the TLD of the domain (mostly in case of private TLDs), 3) the IP

range to which the IP address of the domain belongs to, 4) the autonomous system

of the IP address for that domain, or 5) the national CERT responsible for the TLD

(in case of country-code TLD) or the entire IP address space. We used this approach

to perform two notification campaigns: the first one for high-profile domains, which

are more critical to be fixed as soon as possible, in December 2019, and the second

campaign related to the global scan in September 2020.

4.7.1 Results of the First Notification Campaign

Regarding high-profile domains, we have sent 128 emails to notify CSIRTs responsible

for 7,653 domains with SPF Pass or Permerror results. We were not able to find any

abuse contact address of responsible CSIRTs for 573 domains. For some high-profile
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domains prone to phishing attacks, e.g., microsoft.com.tr, we manually visited their

websites and contacted them directly. In the first 5 days after sending notifications, we

repeated our scans and found that 160 domain owners re-configured their SPF rules.

The quickest clean-up action was initiated by the US government CERT (50 domains),

national CERT of Austria (7 domains), Spain (7 domains) followed by CERT Polska,

French CERT (ANSSI) and Danish CERT (CFCS-DK): 5 domains each.

Re-scanning the same set of domain names in October 2020 shows that 1,734 do-

main names changed their status from Permerror to Softfail (663 domains), Fail (569),

Neutral (83), None (361), Pass (2), and Temperror (56). Moreover, 43 out of 152

high-profile domains changed their status from Pass to another status. Note that it is

challenging to assess the effectiveness of our notification campaign because adminis-

trators may replace, for example, one misconfiguration by another (e.g., Permerror by

Pass), however overall, after notifying CSIRTs responsible for misconfigured domains,

as many as 23.2% (1,777 out of 7,653) were re-configured.

4.7.2 Results of the Second Notification Campaign

Regarding the global scan, we found the total number of 6,412,322 misconfigured do-

mains, 213,112 with SPF Pass results, and 6,199,210 with SPF Permerror results. For

23,116 domain names, we were not able to find any contacts to responsible CSIRT.

Using the same above-mentioned notification approach, we sent emails to 110 CSIRTs.

For some CSIRTs, due to the large size of the attachment files, we had to send two

separate emails, one related to domains with SPF Pass and the other one related to

SPF Permerror. Then, we re-scanned the domains every week to see how CSIRTs react

to our notifications. After one week, we observed changes in the SPF results of 11,552

domains and another 917 domains after the second scan (we did not observe any major

change after the third scan). For those domains that changed their SPF results, 567

changed from Pass to Fail, 56 domains to Neutral, 8,792 domains to None, 2,344 to

Softfail, and others to Temperror and Permerror. We also did not observe any major

changes in domains with Permerror. Overall, after notifying CSIRTs responsible for

affected domains, 0.2% (12,469 out of 6,412,322) were re-configured.

The differences between the remediation rates of the first and second campaign are

to be expected and likely caused by: 1) the importance of vulnerable domains (high-

profile domains are more likely to be fixed), 2) the magnitude of vulnerable domains
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(the number of vulnerable domains in the second campaign was three orders of mag-

nitude larger). The magnitude of vulnerable resources is important since obtaining

contact information at scale is highly problematic (for researchers, security companies,

or CSIRTs), especially after the introduction of GDPR, and there is no alternative

method suitable for large-scale notifications [177].

4.7.3 Notes on Notification Campaigns

We present below more insight into our notification campaigns and summarize major

problems we encountered.

Figure 4.4 (see Appendix) shows the email template of the first notification cam-

paign we sent to CSIRTs about vulnerable/misconfigured SPF records. Although we

did not explain the problem in detail, we received many replies from the CSIRTs in

the first 24 hours after sending notifications either thanking us for notifying them (we

only consider manually typed emails rather than automatic replies) or with followup

questions about the problem, e.g., whether we can prove it by sending a spoofed email.

Figure 4.5 (see Appendix) shows one of the replies we received from one of the CSIRTs

stating that they do not understand the problem and they think that the receiving MTA

should be “smart enough” to handle Permerror responses. After providing the proof of

concept, they notified the domain owners and fixed all the SPF records. On the other

hand, in the second campaign, we used a more detailed email template and explained

more about the problem (for each domain, we specified the reason for misconfiguration,

i.e., Permerror or Pass).

Note that re-configuring domain names does not necessarily mean that the domain

owners permanently solved the problem. As mentioned earlier, for 8,792 domains, the

SPF result changed from Pass to None, which means that either the administrators

removed the SPF record (possibly thinking that removing the record is better than

setting a wrong one) or the domain just expired and was not registered anymore.

Sending large scale notifications present its own difficulties already discussed in

previous work [176,177,179]. In addition to them, we encountered three major problems

with sending emails to CSIRTs:

• Some countries do not have an official CSIRT to notify.

• Some CSIRTs do not have an officially published email address. Therefore, to no-
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tify them, one needs to fill an online form on their websites making it impractical

for large scale notifications.

• Finally, some CSIRTs changed their email addresses so that we received bounced

emails.

Overall, our experience from the two notification campaigns shows that reporting

vulnerabilities through CSIRTs can be effective but depends on its possible impact and

magnitude of affected resources.

4.8 Related Work

In this section, we review previous work on measuring and analyzing email security

extensions.

Durumeric et al. [180] measured the adoption of SMTP security extensions and

their impact on end users. They studied SMTP server configurations for the Alexa top

one million11 domains and SMTP connections to and from Gmail gathered over a year.

They reported the existence of a long tail of over 700,000 SMTP servers, of which only

35% successfully configure encryption, and only 1.1% specify a DMARC authentication

policy.

In 2017, Durumeric [162] measured the extent of SPF and DMARC adoption for one

million top domains in the Alexa list. His results showed that 40.1% of the domains have

published SPF records while only 1.1% of them have valid DMARC records. Hu and

Wang [163] reported similar statistics in 2018 with the results of 44.9% published SPF

records and 5.1% published DMARC records showing approximately 5% of increase

in one year. In their end-to-end experiment, they spoofed 30 high-profile domains and

reported the ratio of emails that reached inboxes of selected email providers. We perform

a similar analysis for both SPF and DMARC records but in two different phases.

First, we analyze the global adoption of SPF and DMARC rules for different TLDs

and then, we focus on more prominent domains (with transactional emails) including

banking websites, government portals, national and international businesses as well

as defensively registered domains and their subdomains. We also consider end-to-end

spoofing but just as a proof of concept for our defined threat models and only for 10

high-profile domains.
11https://www.alexa.com/topsites
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Foster et al. [168] evaluated the security extensions using a combination of measure-

ment techniques to determine whether major providers support the Transport Layer

Security (TLS) protocol [146] at each point in their email message path, and whether

they support SPF and DKIM on incoming and outgoing mail. They reported that while

the use of SPF is common, enforcement was limited. Scheffler et al. [175] investigated

the consequence of a wrong implementation of the check host function at the receiver,

which lets attackers perform denial-of-service (DoS) attacks on a local DNS resolver.

While our goal is not to evaluate the SPF abuse, we show that 4,349,463 domains in

the global scan, 1,131 high-profile, and defensively registered domains have published

SPF records that require more than 10 DNS lookups. Therefore, such misconfigured

records may lead to abuse of local DNS resolvers.

Finally, Hu et al. [181] investigated the reasons behind the low adoption rates of

anti-spoofing protocols. They conducted a user study involving email administrators

and showed that they believe the current protocol adoption lacks the crucial mass due

to the protocol defects, weak incentives, and practical deployment challenges.

4.9 Conclusion

It is paramount for high-profile domains and defensively registered domains to establish

appropriate SPF and DMARC policies to reduce the chance of successful spear phish-

ing attacks. In this chapter, we evaluate the adoption of the SPF and DMARC security

extensions by domain names in two phases and analyze spoofing possibilities enabled

by the absence of their rules or their misconfigurations. The results show that a large

part of the domains do not correctly configure the SPF and DMARC rules, which en-

ables attackers to successfully deliver forged emails to user inboxes. In particular, we

show that for top 500 domains of 139 countries, the adoption rate of SPF and DMARC

records are 65.9% and 34.3%, respectively. For banking websites, we obtain almost the

same results (64.9% and 35.9%) as for the TOP500 list. However, for defensively regis-

tered domains, the results are significantly higher especially in terms of published SPF

records with 95.37% adoption and 40.1% for DMARC. We also, for the first time, in-

vestigate the problem of subdomains in the anti-spoofing techniques and their possible

abuse to send forged emails.

We also emulate the SPF check host function not only to evaluate Pass and Fail
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results but also obtain all the possible results such as Permerror, None, and Neutral for

both domains and subdomains. The investigation shows that syntactically wrong SPF

rules may break the trust-based authentication system of email service providers (e.g.,

Outlook and Yahoo) by allowing forged emails to land in the user inbox. To improve

deployment of SPF and DMARC, we have presented a methodology for managing SPF

and DMARC records and analyzing DNS logs that may prevent domain spoofing.

For remediation, we have sent the total of 238 emails to notify the CSIRTs responsi-

ble for 6,419,975 domains. Within the first two weeks after the notification campaigns,

they managed to inform domain owners and re-configure SPF records of 12,629 vul-

nerable/misconfigured domains. More importantly, as many as 23.2% of high-profile

domains were re-configured at the end. Our experience shows that disclosing vulnera-

bilities through CSIRTs can be effective, especially for valuable domain names. Finally,

while we do not publish the scan data because of ethical concerns, we make the data

available upon request to encourage reproducibility.
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Appendix

In this section, we present the email template of the first notification campaign we

sent to CSIRTs about vulnerable/misconfigured SPF records (see Figure 4.4) and the

exchange of mails with one of the CSIRTs that led to fixing the misconfigured SPF

records (see Figure 4.5).
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Hello,

We	are	writing	to	inform	you	of	a	misconfiguration	in	the	Sender
Policy	Framework	(SPF)	of	the	domain	names	under	your
jurisdiction.	This	means	that	attackers	are	able	to	send	spoofed
emails	on	behalf	of	these	domains.

Please	find	the	list	of	vulnerable/misconfigured	domains	along	with
the	corresponding	SPF	error	in	the	attached	file.

This	vulnerability/misconfiguration	has	been	rated	as	5.4	out	of
10.0,	according	to	the	scale	published	on	the	Common	Vulnerability
Scoring	System	(CVSS).
More	information	about	the	score	of	the
vulnerability/misconfiguration	can	be	found	here:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?
vector=AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N

The	vulnerability/misconfiguration	was	brought	to	our	notice	on
${date_of_scan}.	

If	you	have	any	question	regarding	this	matter,	please	feel	free	to
write	us	at	${our_email}	referencing	${subject_of_notification}.

Sincerely,
${your_name}
${affliation}

Figure 4.4: Content of the email for the first campaign.
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---------------------------CSIRT	reply--------------------------------
Hello,
Thank	you	for	your	notification.

We	were	looking	into	the	reported	domains	and	tried	to	reproduce	your
observations/thoughts.

However,	we	didn't	come	to	the	same	conclusion.

In	case	of	(partially)	invalid	SPF	records	like	most	of	the	reported
domains	are,	the	system	is	smart	enough	to	accept	the	specifically
mentioned	IPs,	but	refuse	everything	else.	I'm	not	sure	how	you	think
an	attacker	could	abuse	those.

Could	you	perhaps	pick	an	example	of	the	supplied	list	and	explain
what	you	have	in	mind?
--------------------------OUR	reply--------------------------------
We	provided	the	POC	by	spoofing	one	of	the	domains

--------------------------CSIRT	reply-----------------------------
I	got	it.	Despite	the	fact	that	the	RFC	in	paragraph	G.3.	encourages	to
take	special	care	of	Permerror	on	checking	site,	it	looks	like	most
companies	are	just	openly	letting	mails	through.	Definitely	not	what	I
expected.

We	informed	all	the	domain	responsible,	also	for	the	ticket	you	opened
through	*******	(they	all	end	up	at	the	same	place,	so	please	be
invited	to	use	********	in	the	future).

Figure 4.5: Sequence of the emails we have exchanged with one of the CSIRTs.
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5.1 Introduction

Starting in 2007, The Internet Corporation for Assigned Names and Numbers (ICANN)

introduced the new Generic Top-Level Domain (gTLD) program1, which enabled hun-

dreds of new gTLDs to enter the domain name system (DNS) since the first delegations.

More than 1,900 applications for new gTLDs were filed after the process opened in 2012.

To date, more than 1,200 new gTLDs have been delegated to the DNS root zone (e.g.:

.nyc, .top). This expansion of the domain name space not only offers a wide range

of options for consumers, but also potentially provides new avenues for cybercrimi-

nals to abuse domain names. Anticipating potential problems, ICANN has also built

safeguards into the program in an attempt to mitigate the prospect of abusive, mali-

cious, and criminal activity in these new gTLDs, such as phishing, spam, and malware

distribution2.
1https://gnso.icann.org/en/group-activities/inactive/2007/new-gtld-intro
2https://newgtlds.icann.org/en/reviews/cct/dns-abuse
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In a previous study, Halvorson et al. [182] concluded that speculative and defensive

registrations dominate the growth of registrations in new gTLDs. Their work, however,

provides very little empirical information about the security of new gTLDs. In this

paper, we investigate the following research question: how do abuse rates in the new

gTLDs compare to legacy gTLDs, since the implementation of the new gTLD program?

We take into account the new gTLDs as well the different parts of the industry involved:

registries, registrars, and privacy/proxy service providers.

To this end, we combine multiple datasets from various sources including zone files,

domain name WHOIS records, data obtained through active measurements, and 11 abuse

feeds provided to us by 5 reputable organizations. These represent malware, phishing,

and spam abuse and cover a three-year period from 2014 to 2016.

Overall, our main contributions can be summarized as follows:

• The research offers a comprehensive descriptive statistical comparison of rates of

domain name abuse in new and legacy gTLDs as associated with spam, phishing,

and malware distribution (§5.5.1) to evaluate joint effects of the existing anti-

abuse safeguards.

• Using regression modeling we perform inferential statistical analysis to test the

correlation between passively and actively measured properties of new gTLDs as

predictors of abuse rates (§5.5.2).

• We analyze proportions of abusive domains across other entities relevant to abuse

prevention practices, i.e. registrars and privacy/proxy providers (§5.5.3 and §5.5.4).

Our findings reveal surprising, previously unknown trends that are relevant since

new gTLDs operate on the basis of different business models and history in compar-

ison to legacy gTLDs. While patterns of abuse vary with respect to abuse type, our

analysis suggests that the total number of spam domains in all gTLDs remains rela-

tively constant. Simultaneously, the number of spam domains in new gTLDs is higher

(Q4 2016) and growing. We also observe a significant decrease in the number of mali-

cious registrations in legacy gTLDs (§5.5.1.7). Therefore, we see a new trend: attackers

switching from abusing legacy to new gTLD domain name space. Our analysis of the

Spamhaus blacklist also reveals that in the last quarter of 2016, new gTLDs collec-

tively had approximately one order of magnitude higher rate of spam domains per

10,000 registrations compared to legacy gTLDs (§5.5.1.8).
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This research also systematically analyzes how different structural and security-

related properties of new gTLD operators influence abuse counts. Our inferential anal-

ysis reveals that abuse counts inversely correlate with the restrictiveness of registration

policies (§5.5.2). The analysis of abuse across new gTLDs, registrars, and privacy/proxy

service providers reveals discrete entities afflicted with significantly high concentrations

of abused domains. We find new gTLDs and registrars with concentrations of black-

listed domains above 50% (§5.5.1.8 and §5.5.4). For one registrar, more than 93% of its

domains were reported as abusive by SURBL.

ICANN is willing to further expand gTLDs. Therefore, it is important to understand

how miscreants are using the expanded domain name space in their favor. Finally, as

the presented state of the art in gTLD abuse is in clear need of improvement, we develop

cases for modifying the existing safeguards and propose new ones. ICANN is currently

using these results to review existing anti-abuse safeguards, evaluate their joint effects

and to introduce more effective ones before an upcoming new gTLD rollout.

5.2 Background

The Internet Domain Name System (DNS) comprises one of the critical services of

the Internet, mapping hosts, applications, and services from names to IP addresses [7].

ICANN [10] is the organization responsible for maintaining the Root domain namespace

and its expansion with new top-level domains, in particular new gTLDs. ICANN also

delegates the responsibility to maintain an authoritative source for registered domain

names within a TLD to registry operators (e.g.: Verisign is the registry for .com).

Registries, manage themselves and the domain names under their respective TLDs.

Three main entities are involved in the registration of a domain: registries (afore-

mentioned), registrars, and registrants (so-called tripe-R). A registrant is a user or

company, which in turn has to contact a registrar to register a domain name. A regis-

trar (e.g.: GoDaddy), if affiliated with the TLD of the registrant’s choice, will ask the

registry to perform the registration of the requested domain.

In parallel, web hosting providers maintain server infrastructure that is used to host

content for the domain. DNS providers operate authoritative DNS servers that resolve

domain names to their corresponding IP addresses. Finally, WHOIS Privacy and Proxy

service providers conceal certain personal data of domain name registrants.
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5.2.1 Generic TLDs

The first group of generic top-level domains (gTLDs) was defined by RFC 920 [183] in

October 1984 and introduced a few months later. The initial group of gTLDs (.gov,

.edu, .com, .mil, .org, and .net) were distinct from country-code TLDs (ccTLDs). Until

2012, several gTLDs were approved and further introduced by ICANN, including a set

of sponsored gTLDs such as .asia, .jobs, .travel, or .mobi. We refer to all gTLDs

introduced before the new gTLD program initiated by ICANN in late 2013 as legacy

gTLDs. This study analyzes a set of 18 legacy gTLDs (.aero, .asia, .biz, .cat, .com,

.coop, .info, .jobs, .mobi, .museum, .name, .net, .org, .post, .pro, .tel, .travel, and

.xxx), for which we were able to obtain zone files and WHOIS data, and compare them

to new gTLDs.

5.2.2 New gTLDs

ICANN’s new gTLD program began in 2012, expanding the root zone by delegating

more than 1,200 new gTLDs starting in October 2013 [184]. To obtain a new gTLD,

applicants are required to undergo an intensive application and evaluation process [182]

that includes screening the applicants technical and financial capabilities for operating

a new gTLD. Ultimately, after a new gTLD is assigned to an applicant, it will then

be delegated to the root zone. Following initial delegation, each new gTLD registry is

required to have a “sunrise” period of at least 30 days, during which trademark holders

have an advance opportunity to register domain names corresponding to their marks,

before the names are generally available to the public.

New gTLDs can be classified into four broad categories [184]3:

• Standard or generic gTLD: gTLDs that are generally open for public registration,

e.g. .movie, .xyz, or .family4

• Geographic gTLD: gTLDs that cover cities, states, or regions, e.g. .amsterdam or

.berlin.

• Community gTLD: gTLDs that are restricted to a specific community, such as

.thai, .radio or .pharmacy.
3Note that some gTLDs cross categories. For example, some community gTLDs such as .madrid are

also geographic gTLDs [185].
4While most of these gTLDs are open to public registration, some may registries impose restrictions

on the entities that can register domains.
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• Brand gTLD: gTLDs specific to a company or a brand, such as .google or

.hitachi.

In this chapter, we analyze new gTLDs that are intended for public use. Therefore,

we exclude the great majority of brand gTLDs for which domains cannot be registered

by regular users5, in particular for malicious purposes. We cover new gTLDs for which

registries have submitted their sunrise date information requested by ICANN. In the

first quarter of 2014, there were 77 new gTLDs for which the sunrise period ended and

domain names were available for public registration. For comparison, by the end of

2016 the group consisted of 522 new gTLDs.

5.2.3 Safeguards Against DNS Abuse

In preparation for the new gTLD program, ICANN sought advice from different DNS

abuse and security experts. As a result of broad discussion with multiple stakehold-

ers such as Anti-Phishing Working Group (APWG), Registry Internet Safety Group

(RISG), the Security and Stability Advisory Committee (SSAC), Computer Emergency

Response Teams (CERTs), members of the financial, and Internet security communities,

ICANN proposed 9 safeguards [186,187].

The first safeguard mandated that all new gTLD registry operators provide descrip-

tions of the technical back-end services to ensure their technical competence (vetting

registry operators). The second safeguard requires all new gTLD registries to implement

DNSSEC at the root level. The third safeguard prohibits domain wildcarding to ensure

that domains resolve for an exact match and do not redirect users for non-existent

domain names. The fourth safeguard requires new gTLD registries to remove orphan

glue records when it is proved that such records have been used in malicious activity.

For the fifth safeguard, operators have to create and maintain “Thick WHOIS” records,

i.e. complete WHOIS information from all the registrars on all domains cooresponding

to a given new gTLD. New gTLD operators are also required to make their zone files

available to approved requestors via the Centralized Zone Data Service (CZDS)6. The

agreement mandates all new gTLD registry operators to document abuse contact de-

tails for registries and registrars on their websites. The agreement also obliges operators

to respond to security requests to address security threats but do not define specific
5With a few exceptions such as .allfinanz or .forex brand gTLDs for which the sunrise period has

been announced and ended.
6https://czds.icann.org/en
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procedures for doing so. The ninth safeguard proposed to create a framework for a “high

security zone verification program”, however, due to a lack of consesus this safeguard

has never been implemented.

The role of safeguards in the new gTLD program is critical since a broadened

domain name space creates new opportunities for cybercriminals. The majority of the

existing safeguards however, may not directly prevent domain abuse. For example,

DNSSEC is intended to increase the security of the Internet by adding authentication to

DNS resolution to prevent attacks such as DNS spoofing [67] rather than, for example,

preventing legitimate domains from being hacked. We agree that making the zone files

of new gTLDs open to security research may indirectly contribute to improving security

of new gTLD domain space. It does not, however, prevent miscreants from registering

domains for malicious purposes.

As it may be difficult to statistically measure the effects of the existing safeguards

individually, we opt for a rigorous approach to assess their joint effects on domain abuse

rates.

5.2.4 Related Work

Numerous studies have looked into discovering, predicting, or explaining abuse across

the DNS ecosystem [39, 170, 188–192]. In addition to those, there are other stud-

ies that investigated domain re-registrations patterns and their relation with domain

abuse [193–196]. For example, Lever et al. studied the maliciousness of domains before

and after re-registration with a focus on when malicious behavior occurs. Their findings

showed hundred thousands of expired domains that were maliciously re-registered [195].

When it comes to quantifying the impact of specific factors that influence security

of gTLDs, in particular new gTLDs, there exists very little empirical work. Rasmussen

and Aaron regularly release APWG Global phishing reports in which they examine

phishing datasets collected by APWG and several other supplementary phishing feeds.

Recently, they concluded that phishing in the new gTLDs is rising but is not yet as

pervasive as it is in the domain space as a whole [197]. Halvorson et al. found that new

gTLD domains are more than twice as likely as legacy TLDs to appear on a domain

blacklist, within their first month of registration [182]. Vissers et al. studied large-scale

malicious campaigns in the .eu TLD for a period of 14 months and observed that 80%

of the malicious registrations are part of just 20 long-running campaigns. Moreover, out
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of all domains operated by these campaigns, 18% never appeared on any blacklist [198].

Previous literature highlighted the importance of reliable security metrics to es-

timate abuse rates across network players in the domain ecosystem such as hosting

providers or Autonomous Systems [40] and discussed specific factors that can influence

this concentration of abuse [199,200]. For the case of TLD operators, Korczyński et al.

designed security metrics to measure and benchmark entire TLDs against their mar-

ket characteristics [201]. They found that next to TLD size, abuse primarily correlates

with domain pricing (free versus paid registrations), efforts of intermediaries (mea-

sured through the proxy of their DNSSEC deployment rate), and strict registration

policies [201].

We build on the existing work in several ways. First, we analyze and compare the

distribution of abuse across new and legacy gTLDs. Next, we make the first attempt to

develop a comprehensive approach that can statistically quantify the impact of operator

security indicators along with the structural properties of new gTLDs on DNS abuse

rates.

5.3 Measurement datasets

In this section we cover six types of datasets used in this research: abuse feeds, WHOIS

records, DNS zone files, active web scans, DNS scans, and passive registry data.

5.3.1 Abuse Feeds

To assess the prevalence of maliciously registered7 and compromised domains8 per

gTLD and registrar, we use 11 distinct abuse feeds. These represent malware, phishing,

and spam abuse and have been generously provided to us by Spamhaus [202], APWG

[97], StopBadware [96], SURBL [203], the Secure Domain Foundation (SDF) [204],

and CleanMX [205]. All six reputable organizations provide abused domain or URL

data feeds employed in operational environments. Spamhaus data contains domains

with low reputation collected from spam payload URLs, spam senders and sources,

known spammers, phishing, virus, and malware-related websites [206]. APGW con-

tains black/white listed phishing URLs submitted by accredited users through the

eCrime Exchange (eCX) platform. The StopBadware Data Sharing Program (DSP)
7Domains registered by miscreants for the purpose of malicious activity
8Domains exploited using vulnerable web hosting
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feed consists of abusive URLs shared by ESET, Fortinet, and Sophos security com-

panies, Internet Identity, Google’s Safe Browsing appeals results, the StopBadware

community, and other contributors [207]. SURBL ph is a phishing domain blacklist

comprised of data supplied by among others MailSecurity, PhishTank, OITC phishing,

PhishLabs, US DHS, NATO [208]. The SURBL jp blacklist contains domains ana-

lyzed and categorized as spam (e.g. unsolicited) by jwSpamSpy software, traps, and

participating mail servers. SURBL ws contains mainly spam domains from SpamAs-

sassin, the Anti-Spam SMTP Proxy, as well as information from other data sources

including internal and external trap networks. The SURBL mw feed contains data

from multiple sources that cover malicious domains used to host malware websites, pay-

loads or associated redirectors [208]. The SDF contains domains and URLs classified

as phishing or malware. The domain names were queried against the Secure Domain

Foundation’s Luminous API which aggregates data from open source blacklist feeds

and registrar suspension lists [204]. Note that unlike the other data feeds the SURBL

and SDF feeds cover the 2,5-year study period between July 2014 and December 2016.

Finally, CleanMX contains three URL blacklists identifying phishing, malware web-

sites, as well as a “portals” category that contain defaced, spamvertized, hacked, and

other types of abused websites. Table 5.1 shows the number of unique blacklisted 2nd-

level domain names per feed. In Appendix 5.8, we further discuss the overlap among

blacklists.

Table 5.1: Overview of blacklists: unique blacklisted gTLD domain names for the Stop-
Badware SDP, APWG, Spamhaus, SDF, CleanMX, and SURBL datasets for 2014,
2015, 2016.

Year SB APWG Spamhaus SDF CleanMX ph CleanMX mw
2014 403,347 60,681 1,901,970 41,094 68,523 169,237
2015 501,982 139,538 2,505,407 142,285 98,112 117,140
2016 502,579 83,215 3,944,684 110,687 138,869 149,632
Year CleanMX pt SURBL ph SURBL mw SURBL ws SURBL jp
2014 205,051 68,208 289,664 1,229,698 1,484,807
2015 124,608 134,591 220,073 1,813,858 2,475,745
2016 68,413 173,326 106,819 2,023,178 2,442,592

Note that some of the aforementioned feeds contain data at the URL level while

others at the domain level. The distinction is important from an operational level.

While some domain names that appear in URL blacklists are registered by miscreants

for malicious purposes only, the majority of domain names are compromised domains,
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i.e. they were registered by legitimate users and hacked (see e.g.: phishing survey [209]).

From the operational point of view blocking the domain name element of a blacklisted

URL might harm legitimate operations. With this in mind, Spamhaus and other data

providers maintain blacklists of domain names and perform extensive checks to pre-

vent legitimate domain names from being listed. Therefore, the domain blacklists can

be used by production systems to, for example, block emails that contain malicious

domain names. In this paper, we refer to both domain names that appear in the do-

main blacklists and as part of of blacklisted URLs as “abused domains” or “blacklisted

domains”.

5.3.2 WHOIS Data

Most of the abuse feeds used for this study contain no additional domain name at-

tributes such as registrar name or date of registration. We obtained these attributes via

WHOIS databases covering the 3-year study period provided by Whois XML API [210]

and DomainTools [211]. These databases contain WHOIS information for the domains

of the aforementioned 18 legacy gTLDs and for the domain names of the 1,196 new

gTLDs that had been delegated during our study period [212].

We extract <domain, registrar name> tuples from WHOIS data and use these in

conjunction with our abuse feeds to map domain names or the domain element from

abused URLs to a sponsoring registrar. The registrar name is used to determine the

amount of abuse related to the registrar. We also extract the <domain, creation

date> tuples and use these to determine if the domain has been maliciously registered

or compromised.

5.3.3 DNS Zone Files

The sizes of gTLDs vary significantly. In order to provide a fair comparison criteria

across gTLDs, we need to take into account their size, i.e., the number of domains

registered. To do that, we processed daily zone files (containing all domains for each

gTLD on a given date) for the 3-year study period. The rate of abuse, i.e. X number

of blacklisted domains over the Y number of total registrations provides a more fair

comparison criteria across gTLDs.

To give an idea of this difference, we show in Figure 5.1 a time series of unique

domain names under legacy and new gTLDs. As can be seen, the legacy gTLDs still

109



Chapter 5. Cybercrime After the Sunrise: A Statistical Analysis of DNS Abuse in
New gTLDs

account for the majority of registrations (160.9M vs 24.5M in Q4 2016).
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Figure 5.1: Zone file sizes for legacy and new gTLDs

We also relied upon zone files to determine the number of DNS Security Exten-

sions (DNSSEC)-signed domains for each gTLD. One of the new gTLD program safe-

guards requires that all new gTLD applicants have a specific plan for DNSSEC deploy-

ment [187]. We used this data in our inferential analysis (see §5.5.2). Using regular

expressions we matched DS records in the zone files and counted the distinct number of

domains with DS records. The DS record is kept in the parent (TLD) zone and is used

to prove the validity of cryptographic DNSSEC chain. Presence of a DS record indicates

that the domain supports DNSSEC.

5.3.4 Active Web Scan

Using our web measurement platform, we crawled each new gTLD domain found in the

zone files generated on May 2, 2017 (24,2M domains). We crawled these domains to

determine how many are active and hosting content (see §5.4.2 for more details). The

number of legacy gTLD domain names proved too voluminous to scan for this study.

Therefore, we created a representative sample of 16,7M domain names (from the same

date) to scan, using stratified sampling. A domain was considered non-responsive, if

fetching www.example.com or example.com respectively, returned an error. If our crawler

detects a redirect in either the retrieved HTML code or the HTTP headers then these

redirects are followed. Any domain resulting in a crawl chain of more than 5 redirects

is also marked as non-responsive.

The crawler is designed to have a minimal impact on the servers that are crawled.

For this reason only the main page is retrieved. The data captured for each domain
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includes the HTML code, HTTP headers and status codes. To determine if a domain

is parked, the HTML code is analyzed using pattern matching to search for strings,

which might indicate that the domain is for sale. The crawler also looks for URLs that

are linked to known parking service providers.

5.3.5 Active DNS Scan

During the domain scan process we also queried the DNS system to retrieve the A, AAAA

and SOA records for each domain to detect active domains serving content (see §5.4.2).

The DNS crawler sends queries to a dedicated instance of the unbound DNS resolver to

check whether domains resolve. Moreover, the SOA record is indicative of whether the

primary authoritative name server for the domain is linked to a known parking services

provider.

5.3.6 Passive Data for Registries

In this study, we analyzed new gTLDs whose domain names became available for pub-

lic registration within the study period. The time between the delegation of a new

gTLD and the end of its sunrise period might take several months9. Consequently, our

analysis includes new gTLDs after their respective sunrise periods. This data, provided

by ICANN via their public portal [212], contains 522 new gTLDs with sunrise periods

ending during the timeframe of the study.

We also used a list of registry operators, their affiliates, and associated new gTLDs

provided to us by ICANN. We mapped gTLDs to related registry operators regardless

of which name they were operating under. We used the mapping of parent companies

of registry operators and the corresponding new gTLDs in our inferential analysis as a

proxy for registration practices.

Relying upon ICANN’s categorizations of new generic, community, geographic, and

brand gTLD registry applications, we conducted an inferential analysis on registration

restrictions. We assigned registration “levels” to new gTLDs, from the least to most

restricted groups: 1 generic, 2 geographic, 3 community, and 4 brand. Intuitively, while

generic gTLDs are normally unrestricted and open for public registration, registration

policies of community or brand gTLDs are strict and may prevent miscreants from
9E.g. delegation of .zuerich: December 25, 2014 [213], zone file seen for the first time: January 1,

2015, sunrise period termination: June 5, 2017 [212]
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malicious registrations.

5.4 Methodology

5.4.1 Security Metrics

To determine the distribution of abusive activities across the gTLDs and registrars, we

analyze the occurrence of unique abused domains. Previous research has also proposed

two complementary security metrics, i.e. the number of unique fully qualified domain

names (FQDNs) and unique blacklisted URLs aggregated by TLDs [201]. However, due

to space constrains, we do not present our results for such additional metrics.

5.4.2 Size Estimate of TLDs

In order to have a fair comparison criteria, we normalized the number of reported

domains from blacklists (Table 5.1) by the size of their respective TLD. We calculated

the size of each gTLD by counting the number of 2nd-level domains present in a zone

file for each gTLD at the end of an observation period. We used zone files as they

are the most accurate source to determine gTLD sizes. An alternative would be to

use the ICANN monthly reports that summarize domain activity for all registered

domains [214]. This would however result in an over counted gTLD size since some

registrants register domain names but do not associate them with name servers.

The TLD size can also be used as an explanatory factor for the concentrations

of abused domains, as indicated in the previous research [40, 200, 201]. However, it is

unclear what portion of the domain names are in use and serve content. Halvorson et al.

have shown that in 2015 as many as 16% of domain names in new gTLDs with NS records

did not resolve [182]. Using our Web and DNS crawling platform, we performed a new

scan and classified each domain as belonging to one of five groups: i) No DNS domains

that do not resolve when queried by our DNS crawler, ii) Parked domains that are

owned by parking services, advertisement syndicators, and advertisers. We follow the

classification methodology outlined by Vissers et al. [172], iii) HTTP Error domains for

which authoritative name servers return valid responses but the corresponding websites

do not return an HTTP 200, vi) Redirect domains are redirected to a different domain,

and v) Content domains that serve valid Web content.

Figure 5.2 shows the categorization results for all domains in the new gTLDs and
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new gTLDs

legacy gTLDs

Redirect Parked HTTP error No DNS Content

Figure 5.2: Categorization for all domains in the new TLDs and a random sample of
the legacy TLDs.

a random sample of the legacy gTLDs. Interestingly, there is a significant increase

in erroneous domains in the new gTLDs (“No DNS” and “HTTP Error” categories)

as compared to legacy gTLDs. “No DNS” domains account for about a quarter of

all domains (24.2%), whereas domains for which the corresponding websites serve an

HTTP error account for another 12.2%.

Note that we use this measurement data in the inferential analysis to adjust mea-

sured TLD sizes. Intuitively, only the domains serving content are exposed to certain

types of vulnerabilities and can be hacked. On the other hand, parked domains may

be used to scam users or to distribute malware. One might therefore expect a positive

correlation between the number of parked and maliciously registered domains.

5.4.3 Size Estimate of Registrars

Since we are interested in comparison between registrars, we calculated their sizes

from the WHOIS data by counting the number of distinct domain names linked to each

registrar name. Note that the WHOIS data may contain multiple name variants for a

single registrar. E.g.:, GoDaddy is listed as a registrar using 52 variations, such as

“GODADDY.COM, LLC”, “GoDaddy.com, LLC (R91-LROR)” and “GoDaddy.com,

Inc.”. Therefore, we need an additional entity resolution step to group together all the

different registrar name variants as a single registrar.

We also used the IANA Registrar ID, which is assigned to ICANN accredited regis-

trars [215]. We automatically matched the list of registrar names against names found

in the WHOIS data. Then, we manually mapped the remaining registrar variants. To

determine the amount of abuse related to a registrar, we mapped each domain name

found in an abuse feed to its respective registrar using the WHOIS records with the

closest enclosing time-window.
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5.4.4 Compromised Versus Maliciously Registered Domains

Miscreants can both register or compromise and abuse legitimate domains. To dis-

tinguish between compromised and maliciously registered domains, we build on three

heuristics previously used in domain abuse surveys (e.g. phishing survey by Aaron and

Rasmussen [197]). More specifically, we label a domain as maliciously registered if it

was involved in criminal activity within a relatively short time after its registration or

if it contains a brand name or a misspelled variant of brand name. We refer the reader

to Appendix 5.9 for more details on the methodology used in our study.

Domain types [%]
0 20 40 60 80 100

Y
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2015
2016

Maliciously registered Compromised Legitimate Unlabelled

Figure 5.3: Categorization results: the fraction of maliciously registered, compromised,
legitimate, and unlabelled domains for APWG feed.
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Figure 5.4: Categorization results: the fraction of maliciously registered, compromised,
legitimate, and unlabelled domains for StopBadware feed.

Figure 5.3 and Figure 5.4 show the categorization of domains blacklisted by APWG

and StopBadware respectively during the study period (2014, 2015, and 2016). Note

that up to 1.1% of all domains submitted to the APWG have been pre-filtered based

on the maintained list of domains corresponding to legitimate services and labeled

as “legitimate”. For comparison, we have excluded less than 0.3% of the StopBadware

domains. A previous study showed that domains of legitimate services are often misused

by miscreants to distribute malware or used in phishing campaigns [201]. However, some

may also represent legitimate domains that were incorrectly blacklisted.

The results indicate that 78.8% of abused phishing and 86% of malware domains

(listed on URL blacklists in 2014) were compromised by criminals (see Figure 5.3 and
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Figure 5.5: Time series of counts of phishing domains in legacy gTLD, new gTLDs,
and all gTLDs (Total) based on the Anti-Phishing Working Group feed (APWG, 2014-
2016, Table 5.1). Log scale on y axis.

Figure 5.4). In 2016, those percentages were smaller: 57.2% and 73.9% of phishing

and malware domains were labeled as compromised. Although domains listed in URL

blacklists are predominantly compromised, their number has been gradually decreasing.

Instead, miscreants are registering domain names more often. We find that 19.5%,

28.2%, 41.5% and 13.2%, 21.9%, 25.8% (in 2014, 2015, and 2016) of all phishing and

malware domains respectively were presumably maliciously registered by miscreants.

This trend suggests a shift in the behavior of miscreants that over time seem to prefer

registering rather than compromising legitimate domains.

5.5 Results

5.5.1 TLD Reputation

5.5.1.1 Phishing Abuse

Figure 5.5 plots a time series of the number of phishing domains for new gTLDs,

legacy gTLDs, and a “Total” number for our 2014–2016 study period based on data

from the APWG feed. We aggregate phishing incidents on a quarterly basis and present

counts using a logarithmic scale. We observe that the total number of phishing domains

(purple line) overlaps largely with the number of phishing domains in legacy gTLDs.

This phenomena is due to the disproportionate market share of domain names registered

in legacy gTLDs. While the number of abused domains remains relatively constant in

legacy gTLDs, we observe a clear upward trend in the absolute number of phishing
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domains in new gTLDs. We observe similar trends in SURBL phishing and CleanMX

phishing datasets (which have been ommitted due to space contrains).
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Figure 5.6: Time series of abuse rates of phishing domains in legacy gTLDs
and new gTLDs based on the APWG feed (2014-2016). Rate = 10, 000 ∗
#blacklisted domains/#all domains.

5.5.1.2 Normalized Phishing Counts

As previously discussed, reliable reputation metrics must account for market shares

(i.e. size) as larger market players may experience a higher amount of domain abuse.

Figure 5.6 shows a time series of abuse rates of phishing domains for legacy gTLDs

and new gTLDs based on the APWG feed (due to space limitation we do not present

figures related to abused CleanMX phishing and SURBL phishing domains).

Here, abuse rates are presented on a linear scale. E.g., in the second quarter of

2015 the domain abuse rate for legacy gTLDs is equal to 3.82503. This means that,

on average, legacy gTLDs had 3.8 blacklisted phishing domains per 10,000 registered

domains. Our results suggest phishing abuse rates in legacy and new gTLDs to be

converging towards similar values over time and were almost equal the end of 2016.

5.5.1.3 Phishing: Compromised vs Maliciously Registered

Up to this point, our descriptive statistical analysis of phishing abuse rates in the new

and legacy gTLDs has conflated compromised and maliciously registered domains. Now,

we compare abuse rates for these two types, separately.

Figure 5.7 plots abuse rates for compromised phishing domains within legacy gTLDs

and new gTLDs, based on the APWG feed over time. The curves corresponding to all

blacklisted phishing domains and compromised phishing domains of legacy gTLDs (cf.
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Figure 5.7: Time series of abuse rates of compromised phishing domains in legacy
gTLDs and new gTLDs based on the APWG feed (2014-2016). Rate = 10, 000 ∗
#compromised domains/#all domains.
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Figure 5.8: Time series of abuse rates of maliciously registered phishing domains
in legacy gTLDs and new gTLDs based on the APWG feed. Rate = 10, 000 ∗
#maliciously registered domains/#all domains.

Figure 5.6 and Figure 5.7) follow a similar pattern due to a disproportionate concen-

tration of compromised domains in legacy gTLDs.

Figure 5.8 on the other hand, shows abuse rates for maliciously registered phishing

domains in the legacy and new gTLDs in APWG feed over time. When comparing

the rates of all blacklisted domains of new gTLDs with rates of maliciously regis-

tered domains (cf. Figure 5.6 and Figure 5.8), we conclude that (despite higher relative

concentrations of compromised domains in legacy gTLDs) miscreants more frequently

choose to maliciously register domain names using one of the new gTLDs.

Moreover, we observe relatively higher rates of maliciously registered domains in new

gTLDs in the first three quarters of 2015. We find 616 abused new gTLD domains. We

observe 182 and 111 abused .work and .xyz domains, respectively. Manual inspection
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indicates that the majority of .work domains were registered by the same person: 150

domains were registered on the same day using the same registrant information, the

same registrar, and the domain names were composed of similar strings.

Attackers often seem able to maliciously register strings containing trademarked

words. Manual analysis of maliciously registered domains in the fourth quarter of 2015

revealed 88 abused .top domains 75 out of which contain the words: Apple, iCloud,

iPhone, their combinations, or misspelled variants of these strings suggesting that they

may have been all used in the same phishing campaign against users of Apple Inc.

products.
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Figure 5.9: Time series of counts of malware domains in legacy gTLD, new gTLDs,
and all gTLDs (Total) based on the StopBadware DSP feed.

5.5.1.4 Malware Reputation

Having examined phishing abuse, we now analyze the malware related activity.

Figure 5.9 presents a time series of the number of malware domains in legacy gTLD,

new gTLDs, and a “Total” based on the StopBadware feed between 2014 and 2016. Sim-

ilar to phishing abuse, the total number of malware incidents in all gTLDs is mainly

driven by incidents in legacy gTLDs (88.6%). We observe that the number of abused

malware domains in legacy gTLDs remains relatively constant, whereas a growing trend

in the number of malware domains in new gTLDs is clearly visible. SURBL mw and

CleanMX malware datasets (not presented due to space limitation) confirm this ob-

served trend.
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Figure 5.10: Time series of abuse rates of malware domains in legacy gTLDs and
new gTLDs based on the StopBadware DSP feed (2014-2016). Rate = 10, 000 ∗
(#blacklisted domains/#all domains).

5.5.1.5 Normalized Malware Counts

We now account for gTLD market shares by constructing a time series of abuse rates of

malware domains in legacy and new gTLDs based on the StopBadware feed (see Fig-

ure 5.10). As before, the abuse rates are presented on a linear scale. Here, we observed

an exponential growth of malware domain abuse rates in the new gTLDs up to the first

quarter of 2016. Differences between malware abuse rates in legacy and new gTLDs

is the most prominent in the second quarter of 2016. While legacy gTLDs collectively

had a malware-domains-per-10,000 rate of 9.9, the new gTLDs experienced a rate of

22.7. In absolute terms, malware domains in new gTLDs constitute 23% of all gTLD

domains blacklisted by StopBadware during this period. SURBL and CleanMX mal-

ware datasets confirm the growing trend in terms of the malware rates in new gTLDs

in comparison to legacy gTLDs.

5.5.1.6 Malware: Compromised vs Maliciously Registered

To distill factors that drive higher abuse rates in new gTLDs, in our analysis, we will

differentiate between maliciously registered and compromised domains as we did for

phishing abuse. Figure 5.11 and Figure 5.12 plot time series of abuse rates of com-

promised and maliciously registered malware domains, respectively, in legacy and new

gTLDs. The results suggests that similar to phishing, malware abuse rates in legacy

gTLDs are mainly driven by compromised domains (cf. Figure 5.10 and Figure 5.11). As

expected, the malware abuse rates for new gTLDs are driven by maliciously registered
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Figure 5.11: Time series of abuse rates of compromised malware domains in
legacy gTLDs and new gTLDs based on the StopBadware DSP feed. Rate = 10, 000 ∗
#compromised domains/#all domains.
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Figure 5.12: Time series of abuse rates of maliciously registered malware do-
mains in legacy gTLDs and new gTLDs based on StopBadware DSP. Rate =
10, 000 ∗#maliciously registered domains/#all domains.

domains (cf. Figure 5.10 and Figure 5.12).

Manual analysis of maliciously registered domains reveals distinctive common pat-

terns in domain names. For example, we find 9,376 .link domains of which 9,256 were

created in the first quarter of 2016 and 9,253 were registered through the Alpnames

Limited registrar. 8,381 of all .link domains were registered using two registrar names

only. Moreover, 8,205 and 1,027 were composed of 5 and 6 randomly generated charac-

ters, respectively. We created a user account with Alpnames Limited and tested bulk

domain registration options. In fact, it is possible to randomly generate up to 2,000 do-

mains at once from the selection of 27 new gTLDs using different patterns like letters,

time, cities, zip codes, etc.

Finally, note that the registries of the most abused new gTLDs such as .win, .loan,
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.top, and .link compete on price, and in 2016 their registration prices were occasionally

below US $1, which was lower than the registration fee of a .com domain.

5.5.1.7 Spam Reputation

The results of the spam activity in the new and legacy gTLDs reveal very surprising

trends. Due to space limitation, we only present our analysis of the Spamhaus feed.

Note that Spamhaus provides domain rather than URL blacklists, which means that

the great majority of listed domains are maliciously registered. Figure 5.13 presents a

time series for the number of spam domains observed in legacy gTLDs, new gTLDs, and

the total number of spam domains. While we observed an upward trend in the number

of phishing and malware domains in new gTLDs, in contrast the absolute number of

malicious spam domains in new gTLDs was actually higher than in legacy gTLDs.

Note that the total number of spam incidents in all gTLDs is relatively constant and

in the Q4 2016 is mainly driven by incidents in new gTLDs (58.8%). Figure 5.19 and

Figure 5.20 (see section 5.10), presenting spam domains in legacy and new gTLDs for

SURBL ws and SURBL jp spam datasets confirm this observed trend. The results

suggest an alarming trend that miscreants seem to be switching from abusing legacy

to new gTLDs when it comes to spam domains.
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Figure 5.13: Time series of counts of blacklisted domains in legacy gTLD, new gTLDs,
and all gTLDs (Total) based on the Spamhaus feed.

5.5.1.8 Normalized Spam Counts

Figure 5.14 plots a time series of spam domain abuse rates for legacy gTLDs and new

gTLDs based on the Spamhaus feed. As expected, the difference between spam abuse
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rates in legacy and new gTLDs is quite prominent. While legacy gTLDs collectively had

a spam-domains-per-10,000 rate of 56.9, in the last quarter of 2016, the new gTLDs

experienced a rate of 526.6–which is almost one order of magnitude higher. When

comparing abuse rates based on our SURBL jp and SURBL ws spam feeds in the

same period we observed a spam-domains-per-10,000 rates of 46.6 and 26 for legacy

gTLDs, whereas for new gTLDs the spam-domains-per-10,000 rates are 286.3, and

265.2, respectively.
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Figure 5.14: Time series of abuse rates of blacklisted domains in legacy gTLDs
and new gTLDs based on the Spamhaus feed (2014-2016). Rate = 10, 000 ∗
#blacklisted domains/#all domains.

Table 5.2 (see the Appendix section) lists the top 10 new gTLDs with the highest

relative concentrations of blacklisted domains for selected feeds in the fourth quarter

of 2016. For example, spam-domains-per-10,000 registration rates calculated using the

Spamhaus feed for .science, .stream, and .study are equal to 5,154, 4,756 and 3,343,

respectively. In other words, as many as 51.5%, 47.6% and 33.4% of all domains in

the corresponding zones were abused by cybercriminals and blacklisted by Spamhaus.

Note that our results clearly indicate that the problem is not caused by just a few

abused new gTLDs. As many as 15 most abused new gTLDs had spam-domains-per-

10,000 registration rates calculated using Spamhaus feed higher than 1,000 at the end

of 2016. Does this problem affect all new gTLDs? No. Our analysis of Spamhaus and

SURBL blacklists reveals that approximately 32% and 36% of all new gTLDs available

for registration did not experience a single incident in Q4 2016.

To conclude, while the number of abused domains in legacy gTLDs seem to remain

relatively constant over time (or are decrasing), new gTLDs that underwent rigorous

security analysis by ICANN are much more frequently affected by phishing, malware,
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and especially spam activities. Despite the new safeguards a number of new gTLDs

are more susceptible to DNS abuse in comparison to legacy gTLDs. Given these ob-

servations, we systematically analyze the potential factors driving DNS abuse in new

gTLDs.

5.5.2 Inferential Analysis of Abuse in New gTLDs

Previous work used regression analysis to study the impact of factors that influence the

variation of abuse counts across networks of different intermediaries such as hosting

providers [200] or TLDs [201]. Examples of such factors or more specifically intermedi-

ary properties are size, pricing, domain popularity index, or security effort [200,201]. In

this section, we aim to analyze and quantify the relationship between the collected new

gTLD properties (independent variables), and abuse counts (dependent variable), at

the level of gTLDs. In other words, we use regression analysis to examine the amount

of variance that gTLD properties can collectively explain, out of the total observed

variance in the abuse counts.

Our regression models in Table 5.3 are built using the datasets explained in §5.3.1.

We model the number of abused domains as a dependent variable (i.e. blacklisted

domains or domain name elements of blacklisted URLs) using negative binomial10 gen-

eralized linear model (GLM) with a Log link function. Depending on the model, we use

the total number of abused domains or treat maliciously registered and compromised

domains separately (details follow later). The independent variables in the models are

the following properties of new gTLDs: “new gTLD size” : number of domains in TLD,

“Parked” : number of parked domains, “No DNS” : number of domains that do not

resolve, “HTTP Error” : number of domains for which corresponding websites return

an HTTP error, “DNSSEC” : number of DNSSEC-signed domains, “Type” : an integer

corresponding to the type of new gTLD, from least to most restricted group: 1 generic,

2 geographic, 3 community, and 4 brand, “Registry” : name of the registry operator that

the TLD is operating under.

Table 5.3 in the Appendix section contains the summary of the regression models,

i.e., the estimated coefficients, and their significance levels together with the goodness-

of-fit measures such as the maximum Log likelihood, θ values and minimum Akaike

10We choose negative binomial over Poisson due to the over-dispersion (unequal mean and variance)
in our data.
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information criterion (AIC) value (for more details, we refer the reader to the relevant

literature). Note that the presented models are chosen from a stepwise addition of the

variables into a baseline model with a single explanatory variable. Each column of the

table contains a regression model for one of the abuse feeds with the count of abuse

being the dependent variable.

The results in Table 5.3 are very consistent among all the analyzed abuse feeds.

While all types of abuse show a positive and statistically significant correlation between

the new gTLD size and abuse counts, the coefficients are very weak. We suspect that

this is because the majority of abused domains in the new gTLDs are maliciously

registered rather than compromised.

As expected, two variables indicating the number of domains that do not serve

valid Web content to their users, i.e. “No DNS” and “HTTP Error” show a weak

negative significant relationship with abuse counts. That means, the more domains

labelled as “No DNS” and/or “HTTP Error”, the less abused domains. Those two

variables also correspond to the count of compromised domains rather than maliciously

registered counts.

Moreover, the number of parked domains in new gTLDs plays a weak positive

and statistically significant role in explaining the variance in phishing and malware

domains. The more parked domains in a new gTLD, the more abused domains. This is

to be expected as landing pages of parked domains may serve malware on a large scale.

Note that the coefficients are very small. For example, if we hold the other independent

variables constant and increase the number of parked domains by one unit (which is

the equivalent to multiplying the number of parked domains of a gTLD by 10 since

it is in the log10 scale), the number of phishing domains in APWG is multiplied by

e0.0003 = 1.0003.

Previous research found a negative significant relation between the DNSSEC deploy-

ment and the count of phishing domains [201]. The authors used DNSSEC deployment

as a proxy for the security efforts of both ccTLDs and gTLDs. In our analysis we test

the relationship between the number of DNSSEC-signed domains and abuse counts

using various types of blacklists for new gTLDs. Note that ICANN requires each new

gTLD to demonstrate a plan for DNSSEC deployment to ensure integrity and utility

of registry information. Therefore, in our analysis, the number of DNSSEC-signed do-

mains cannot serve as a proxy for registry efforts and obviously it does not prevent
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malicious registrations. One may suspect that attackers could be interested in deploy-

ing DNSSEC and signing their maliciously registered domains. Although it is not clear

if that is the case, we indeed observe a weak but positive and statistically significant

correlation between the number of DNNSEC-signed domains and the number of abused

domains.

The regression results consistently show a negative correlation between the “Type”

variable reflecting strict registrations and the count of phishing domains. In fact, in com-

parison to other variables, the obtained coefficients indicate the strongest statistically

significant negative correlation for APWG, CleanMX phishing, and SURBL phishing

datasets: −0.54, −0.4, and −0.76, respectively (see Table 5.3). Note that for all other

considered datasets, in particular malware, we also observe negative but not statisti-

cally significant correlations. When we consider separately maliciously registered and

compromised domains (models not presented due to space limitation) the “Type” of

new gTLD plays a significant role in explaining phishing abuse counts only for malicious

registrations. Again, the results are intuitive. For example, it is much easier to register

domains in the .top standard gTLD than it is for the .pharmacy community gTLD,

for which the registration policy restricts the sale of domains to legitimate pharmacies

only.

We also considered other models that contain “Registry” as a fixed effect to capture

systematic differences in the policies of registries across new gTLDs such as pricing,

bulk registration options, etc. Interestingly, our results indicate that none of the registry

operators have a statistically significant effect on the abuse counts.

5.5.3 Privacy and Proxy Services

In this section we present the results of an analysis to determine if there is a difference

in the usage of WHOIS Privacy and Proxy services for abused domains in legacy gTLDs

and new gTLDs. WHOIS Privacy and Proxy services are designed to conceal certain

personal data of domain name registrants who use them. In practice this works by

replacing the registrant information in WHOIS with the information of the WHOIS

Privacy and Proxy service.

There are many legitimate reasons why someone may want to conceal possession

of a domain name. The usage of a WHOIS Privacy and Proxy services by itself alone

is, therefore not a reliable single indicator of malicious activity. A previous study by
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National Physical Laboratories [216] did however find that a significant portion of

abusive domains use Privacy and Proxy services.

There are numerous WHOIS Privacy and Proxy services available, which can be

used by domain owners. In section 5.11, we describe the methodology used in this

study to identify commonly used WHOIS Privacy and Proxy services.

To get an indication of how common WHOIS Privacy and Proxy service usage is,

we aggregated all domains from the WHOIS data by their create date. This shows us the

number of newly added domains per month for legacy and new gTLDs. After checking

how many of these domains were using a Privacy and Proxy service when the domain

was registered, we calculated what percentage of the total number of newly registered

domains is using a Privacy and Proxy service (see Figure 5.15). We find that for legacy

gTLDs the usage is stable with a mean of 24%, and a standard deviation of 1.6. For

new gTLDs the usage is generally below that of legacy gTLDs with a mean of 18% and

a standard deviation of 9.3, which is visualized by the larger spikes and the increase to

above the level of legacy gTLDs near the end of the study period.
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Figure 5.15: Usage percentage of Privacy and Proxy services for newly registered do-
mains

Figure 5.16 shows the percentage of all newly created domains using Privacy and

Proxy service, that have been reported to the Spamhaus or SURBL blacklist on or

after the registration date. We have chosen to use Spamhaus and SURBL for this figure

because these blacklists mainly contain maliciously registered domains. Here again, just

as seen in Figure 5.15, we find that the variability for the new gTLDs is higher than

compared to the legacy gTLDs.

For each blacklist used in this study we analysed the proportion of domains that

were using a Privacy and Proxy service at the time the domain was found to be abusive
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Figure 5.16: Percentage of abusive newly registered domains using Privacy and Proxy
services

and included in the blacklist. Here again, we make a distinction between legacy and

new gTLD domains.

For all SURBL feeds combined in 2016 the mean usage per month of privacy and

proxy services by abusive domains in new gTLD observed is 5,874, with a standard

deviation of 1,984, while for legacy gTLDs the mean usage per month is 21,744 with a

standard deviation of 9,475. For Spamhaus the 2016 new gTLDs mean usage per month

is 8,951 with a standard deviation of 2,892, while for legacy gTLDs the mean usage per

month is 16,569 with a standard deviation of 3,843.

In the SURBL data we find 2 large peaks (see Figure 5.17) of abusive new gTLD

domains using Privacy and Proxy services. Both of these peaks are driven by the .xyz,

.click and .link new gTLDs. We attempted to find peaks in new registration that

correspond to the two peaks seen in Figure 5.17. In the 7-15 day period leading up to a

peak we do see an increase in the number of new registrations for the .xyz, .click and

.link new gTLDs with the same registrar. However, we do not find strong evidence

that the malicious registrations belong to a single or multiple campaigns using WHOIS

Privacy and Proxy services.

The analysis of the use of WHOIS Privacy and Proxy service leads us to conclude

that the usage of a WHOIS Privacy and Proxy services by itself is not a reliable indicator

of malicious activity. Apart from the peaks, the usage of Privacy and Proxy services

for abusive domains is not that high (see e.g. Figure 5.17). The usage of Privacy and

Proxy seems to be higher in legacy gTLDs.
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Figure 5.17: Usage of Privacy and Proxy services for abusive domains, reported by
SURBL

5.5.4 Registrar Reputation

Here we present the distribution of abused domains across ICANN accredited registrars.

For each registrar we find how many (#Incidents) can be attributed to the registrar and

the total number of domains sponsored by that registrar (#Domains). We then calculate

what proportion (Percentage) of all domains managed by the registrar is reported as

abusive by a blacklist (see e.g. Table 5.4 in the Appendix section). An outlier with a

relatively high rate compared to its peers may be caused by registrar-specific policies

or operational practices.

Note, sinkholing of confiscated abusive domains or preventive registration of botnet

C&C infrastructure domains is a common practice and special registrars have been

created for this purpose e.g. “Afilias Special Projects” or “Verisign Security and Sta-

bility”. These registrars have high numbers of abuse and have been filtered out during

the analysis because they are not regular registrars.

Our analysis reveals that “Nanjing Imperiosus Technology Co. Ltd.” is an outlier:

over 93% of its domains are reported as abusive by SURBL (35,502, with a total number

of 38,025 under its management) and 78% by Spamhaus (see Table 5.4). Figure 5.18

shows that both blacklists have marked domains managed by this registrar as abu-

sive starting from early 2016. Starting from November 2016 we see a sharp decline in

domains reported by Spamhaus and SURBL. This can be explained by the fact that

ICANN has terminated the registrar accreditation [217] for this registrar, as it was

determined that the registrar was in breach of the RAA [218]. Termination of the RAA

had an effect on the amount of abuse linked to this registrar.
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Figure 5.18: Abusive domains managed by Nanjing Imperiosus Technology

Alpnames Limited is another registrar that suffers from a high volume of abusive

new gTLD domains reported by both Spamhaus and SURBL. The SURBL feed shows

2 distinctive peaks with a high number of abuse reports in 2016. After more detailed

analysis, we find that these peaks correspond with 103,758 reports of abusive domains in

the .top gTLD in August 2016. In October 2016 we find another peak, which is caused

by 120,669 reports of abusive domains in the .science gTLD. In 2016 Alpnames did

have promotions for domains using the .science gTLD for US $1 or less. We did not

find corresponding peaks in the size of the .top and .science zone files, indicating the

abusive domains have been registered over a longer period of time.

5.6 New Anti-Abuse Safeguards

Our results indicate that the implementation of the 9 anti-abuse safeguards have not

effectively prevented domain name abuse in new gTLDs in comparison to legacy TLDs.

Our findings, therefore, beg the question of whether more effective safeguards could be

implemented by ICANN before the upcoming new gTLD rollout.

Our results suggest that lesser strict registration policies, low registration pricing,

and the possibility of bulk domain name registration lower barriers to abuse. In addi-

tion, we observe that some of the more specific safeguards (e.g. DNSSEC deployment

and prohibition of wildcarding) do not to raise barriers enough to prevent abuse. Yet,

we cannot for example expect registries and registrars to raise registration prices to

reduce abuse levels as this might be in conflict with their economic incentives. Alterna-

tively, registries and registrars with disproportionately higher concentrations of abused
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resources could be penalized while those with relatively lower concentrations could

be financially rewarded, for example through lowered ICANN fees, to align incentives

towards raising abuse barriers. This would also incentivize intermediaries to develop

their own anti-abuse best practices while balancing their anti-abuse policies against

their economic incentives and allow for self-regulation.

Our analysis of domain abuse across new gTLDs revealed that some distinct entities

are (or have been) afflicted with significantly hight concentrations of abused resources.

We observed large concentrations of blacklisted domains associated with Nanjing Im-

periosus Technology in early 2016. ICANN has terminated its registrar accreditation

in this case in early 2017. Yet at the time of writing this paper, registry operators of

the most abused new gTLD (e.g. .science, .stream or .racing) still remain ICANN-

accredited. Accreditation terminations may be effective penalizing factors.

That being said, existing safeguards mostly concentrate on individual complaints

(e.g. removing orphan glue records) rather than on security reputation metrics. An

alternative more effective path forward could be to introduce continuous monitoring of

abuse rates (including that of domain resellers) and employing enforcement mechanisms

such as immediate accreditation termination if the concentrations of abused domains

are persistent and exceed certain levels.

Note that all above-mentioned proposals are currently under consideration by the

ICANN community for upcoming new gTLDs rollout.

5.7 Conclusions

Since its inception, the new gTLD program has led to more than 1,200 strings being

delegated in the root DNS zone, which greatly expanded the domain name space and

increased consumer choice. We presented in this chapter the first comprehensive study

comparing the rates of malicious and abusive behavior in the new and legacy gTLDs.

To that end, we employed datasets from many sources, including zone files, domain

WHOIS information, data obtained through our active measurements, and heterogeneous

blacklists representing malware, phishing, and spam.

While the number of abused domains in legacy gTLDs seem to stay relatively con-

stant over time (or in some cases decreasing), new gTLDs that underwent rigorous

application and evaluation process by ICANN are more frequently affected by phish-

ing, malware, and especially spam activities.
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The systematic investigation of the relation between structural and security-related

properties of new gTLD operators, and abuse counts has shown that the number of

domains in the new gTLDs, number of parked, and DNSSEC-signed domains play

a statistically significant but weak role in explaining the differences in abuse counts

among different new gTLDs. Low domain registration prices, unrestrictive registration

practices, a variety of other registration options such as WHOIS privacy, registration in

bulk and finally the increased availability of domain names decrease barriers to abuse

and seem to make some new gTLDs very attractive for miscreants.

Taken together, our findings indicate that the existing safeguards do not prevent

domain name abuse and therefore we further develop cases for modifying the existing

safeguards and propose new ones, which we extensively discussed with the ICANN

community.
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Appendix

5.8 Overlap Among Blacklists

To determine the overlap among our blacklsits, we present their pairwise intersections

as a matrix in Figure 5.21, after extracting unique domain names from each data

feed. Note that darker shades of grey represent larger overlaps among compared feeds.

For example, the overlap between Spamhaus and SURBL ws indicates that they have

2,257,450 domain names in common within the observation period. This overlap con-

stitutes 37% of the Spamhaus feed. In comparison, 2,257,450 domain names represent

64% of the SURBL ws feed. This is to be expected as both blacklists contain the same

type of abuse, i.e. spam. The rightmost column indicates the absolute number and the
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percentage of samples that each blacklist has in common with all other feeds com-

bined. For instance, the overlap between Spamhaus and all other blacklists is equal to

3,054,837 and indicates that as many as 51% of all domains blacklisted by Spamhaus

are blacklisted by at least one other organization. Combined, these blacklists provide a

comprehensive overview of domain name abuse for various criminal purposes.

5.9 Method to Distinguish Between Compromised and

Maliciously Registered Domains

We flag a domain name as malicious if it is blacklisted within 3 months after its registra-

tion. Aaron and Rasmussen have recently examined the delay between the time when

phishing domains were initially registered and when they were ultimately used in at-

tacks [197]. Their analysis indicates that miscreants tend to age the malicious domains

they register to ensure a higher reputation score from security organizations. They

concluded that the great majority of the domains used for phishing were maliciously

registered within three months before they were used in an attack. To estimate the time

between original registration and blacklisting, we analyze domain WHOIS information

and extract the domain creation date. According to the Registrar Accreditation Agree-

ment (RAA) [218], the creation date of the domain registration cannot be changed as

long as the domain does not expire.

Furthermore, Aaron and Rasmussen identified 783 unique organizations used as

phishing targets in 2015 and 679 in 2016, among which the most popular ones were

PayPal, Yahoo!, Apple, and Taobao [197]. We used this information to create a list of

keywords that the attackers may incorporate in maliciously registered domain names.

As the great majority of phishing attacks target the most popular organizations, we

extracted 300 keywords of the most popular domains according to their Alexa ranking

and we labelled each blacklisted domain as maliciously registered if it contained an

extracted string or its misspelled version. For example, 0paypalpayment.com would be

labelled as malicious as it contains the string “paypal”. To test if the domain contains a

misspelled keyword, we first remove all digits from a domain name and split the resulting

string into words with the “–” character. We compute the Levenshtein edit distances

between the predefined keywords and a set of words derived from a domain name. If

any Levenshtein edit distance is smaller than 2, we label the domain as maliciously
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registered.

Note that from the categorization process we exclude a list of 11,075 domains of

legitimate services that tend to be misused by miscreants. These represent a separate,

third group of domains that are neither maliciously registered nor hacked (i.e. third

party domains). For example, bit.ly – a domain used by a legitimate URL shortener

service – could be used by an attacker to create a malicious URL (e.g. bit.ly/dcsahy)

that may further be used to redirect a legitimate user to a phishing website. In fact,

previous research shows that miscreants extensively abuse a variety of services with

good reputations, affecting not only the reputation of those services, but of entire

TLDs [201]. The list is composed of the 10,000 most popular domains according to

their Alexa ranking and our own, manually maintained lists of domains of legitimate

services (332 domains of URL shorteners and 840 domains of free hosting providers).

5.10 Blacklisted Spam Domains in Legacy gTLD and New

gTLDs Based on the SURBL Feeds.
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Figure 5.19: Time series of counts of blacklisted Spam domains in legacy gTLD, new
gTLDs, and all gTLDs (Total) based on the SURBL ws feed.

5.11 Method to Identify WHOIS Privacy and Proxy Ser-

vices

To identify the most commonly used WHOIS Privacy and Proxy services we used the

following methodology: i) Using the WHOIS data, we aggregated all distinct domains
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Figure 5.20: Time series of counts of blacklisted Spam domains in legacy gTLD, new
gTLDs, and all gTLDs (Total) based on the SURBL jp feed.
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Figure 5.21: Pairwise overlap of feeds with unique domains (2014-2016)

by “registrant name” and “registrant organization” attributes and created a list with

the top 5,000 registrants. ii) A keyword search on the top 5,000 “registrant name” and

“registrant organization” attributes, trying to match any registrant with keywords such

as: “privacy”, “proxy”, “protect”, “private”, “whois” etc. iii) A manual inspection of

the suspect “registrant name” and “registrant organization” attributes to decide if the

registrant is a Privacy and Proxy service (when this was not immediately clear from the

name itself we used an Internet search to find additional information). Using the above

described method we identified 570 “registrant name” and “registrant organizations”
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Table 5.2: Top 10 new gTLDs with the highest relative concentration of blacklisted
domains for StopBadware SDP, APWG, Spamhaus, SDF, and SURBL datasets (fourth
quarter of 2016). Rate = 10, 000 ∗#blacklisted domains/#all domains.

StopBadware APWG Spamhaus SDF
TLD # Domains Rate TLD # Domains Rate TLD # Domains Rate TLD # Domains Rate
TOYS 32 78 LIMITED 31 66 SCIENCE 117,782 5,154 SUPPORT 510 294
TRADE 221 15 SUPPORT 43 24 STREAM 18,543 4,756 TECH 4,409 158
TAfTAR 1 11 CENTER 72 22 STUDY 1,118 3,343 ONLINE 4,179 83
WANG 1,086 11 CREDITCARD 1 13 DOWNLOAD 16,399 2,016 LIMITED 15 32
JUEGOS 1 9 SERVICES 24 10 CLICK 20,713 1,814 REVIEW 161 24
TOP 3,830 8 ONLINE 417 8 TOP 736,339 1,705 CLAIMS 3 19
MOE 5 8 MOE 5 8 GDN 45,547 1,602 PRESS 91 19
CAB 3 7 HOST 32 7 TRADE 23,581 1,521 FURNITURE 4 18
PICS 10 7 LEASE 1 6 REVIEW 9415 1,318 WEBSITE 298 15
TATTOO 2 7 REPORT 3 6 ACCOUNTANT 6,722 1,279 CREDITCARD 1 13

SURBL ph SURBL mw SURBL ws SURBL jp
TLD # Domains Rate TLD # Domains Rate TLD # Domains Rate TLD # Domains Rate
LIMITED 51 109 FOOTBALL 7 16 RACING 51,443 3,812 SCIENCE 152,719 6,683
SUPPORT 82 46 TOP 5,066 11 DOWNLOAD 21,515 2,645 CLICK 27,871 2,441
CENTER 93 29 RIP 1 5 ACCOUNTANT 10,543 2,007 GDN 50,940 1,792
SERVICES 61 25 BID 200 3 REVIEW 12,615 1,766 STREAM 6,033 1,547
CRICKET 57 22 DENTIST 1 3 GDN 49,427 1,739 LINK 39,764 1,238
ONLINE 903 16 LGBT 1 3 FAITH 5,540 1,301 REVIEW 8,705 1,219
WEBSITE 318 14 ACCOUNTANT 11 2 TRADE 19,330 1,247 CRICKET 2,468 993
REPORT 7 14 CAB 1 2 CLICK 13,270 1,162 TRADE 14,535 937
HOST 65 13 SUPPORT 5 2 STREAM 4,406 1,130 FAITH 3,130 735
CREDITCARD 1 13 POKER 1 2 DATE 1,3851 999 TOP 285,488 661

Table 5.3: Negative Binomial GLM for count of abused domains per new gTLD

Dependent variable:
apwg sbw cmx ph cmx pt cmx mw surbl ph surbl mw
(1) (2) (3) (4) (5) (6) (7)

New gTLD size 0.00002∗∗∗ 0.00001∗∗∗ 0.00002∗∗∗ 0.00003∗∗∗ 0.00001∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗
(0.00001) (0.00000) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001)

Parked 0.0003∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗ 0.00003 0.0001∗∗∗ 0.0002∗∗∗ 0.00001
(0.00004) (0.00003) (0.00003) (0.00004) (0.00003) (0.00004) (0.00004)

DNSSEC 0.00001∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗ 0.00001∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

No DNS −0.00004∗∗∗ −0.00003∗∗∗ −0.00005∗∗∗ −0.00005∗∗∗ −0.00002∗∗∗ −0.00004∗∗∗ −0.00004∗∗∗
(0.00001) (0.00001) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001)

HTTP Error −0.00002 −0.00004∗∗∗ −0.0001∗∗∗ −0.00003∗ −0.00004∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗
(0.00002) (0.00001) (0.00001) (0.00002) (0.00001) (0.00002) (0.00002)

Type −0.540∗∗ −0.150 −0.400∗∗ −0.120 −0.190 −0.760∗∗∗ −0.170
(0.220) (0.120) (0.180) (0.170) (0.160) (0.190) (0.220)

Constant −0.630∗∗ −0.390∗∗ −0.960∗∗∗ −1.200∗∗∗ −1.600∗∗∗ 0.330 −2.200∗∗∗
(0.280) (0.170) (0.230) (0.230) (0.220) (0.230) (0.290)

Observations 521 521 521 521 521 521 521
Log Likelihood −566.000 −792.000 −508.000 −546.000 −392.000 −786.000 −284.000
θ 0.140∗∗∗ 0.330∗∗∗ 0.240∗∗∗ 0.200∗∗∗ 0.470∗∗∗ 0.190∗∗∗ 0.240∗∗∗

(0.017) (0.035) (0.034) (0.024) (0.087) (0.019) (0.051)
AIC 1,149.000 1,600.000 1,031.000 1,109.000 800.000 1,588.000 583.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in brackets

attribute combinations used by WHOIS Privacy and Proxy services.

Each blacklist abuse incident contains metadata such as the date when the domain

was added to the blacklist. We used this date to identify the correct historical WHOIS

record for an abused domain. By comparing the “registrant name” and “registrant
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organization” attributes from the domain WHOIS record to the list of known WHOIS

Privacy and Proxy services, we are able to correctly identify abusive domains that were

using a WHOIS Privacy and Proxy service at the time the domain was added to a

blacklist.

Table 5.4: SURBL top10 percentage between blacklisted new and legacy gTLD domains
(#Incidents) and total number of registrar gTLD domains (#Domains).

# new gTLD registrar #Domains #Incidents Percent Legacy gTLD registrar #Domains #Incidents Percent
1 Nanjing Imperiosus Technology 38,025 35,502 93.36 HOAPDI INC. 141 126 89.36
2 Intracom Middle East FZE 20,640 11,255 54.53 asia registry r2-asia (700000) 1,379 598 43.36
3 Dot Holding Inc. 153 76 49.67 Nanjing Imperiosus Technology 35,309 10,834 30.68
4 Alpnames Limited 3,028,011 751,748 24.83 Paknic (Private) Limited 10,525 3,083 29.29
5 Todaynic.com, Inc. 329,399 69,404 21.07 OwnRegistrar, Inc. 22,188 5,238 23.61
6 Web Werks India Pvt. Ltd 785 146 18.6 Eranet International Limited 6,109 1,339 21.92
7 GMO Internet, Inc. d/b/a Onamae 1,734,775 295,641 17.04 BR domain Inc. dba namegear.co 847 158 18.65
8 TLD Registrar Solutions Ltd. 163,988 24,700 15.06 Netlynx Inc. 17,612 3,030 17.2
9 Xiamen Nawang Technology, Ltd 282,925 42,089 14.88 AFRIREGISTER S.A. 1,551 266 17.15
10 Instra Corporation Pty Ltd. 77,642 6,200 7.99 GMO Internet, Inc. d/b/a Onamae 7,306,312 1,177,886 16.12
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6.1 Introduction

Domain names play an important role in almost all types of cybercriminal activities.

Miscreants tent to use domains in various attack scenarios such as phishing (e.g., to

collect sensitive information) or spam campaigns, or as part of command and control

(C&C) services with algorithmically generated domain names (AGDs). In all these

cases, the involved domains are either solely registered for malicious purposes (which

we refer to as malicious for simplicity) or registered for legitimate reasons but have

been compromised at some time to serve malicious content (we refer to these domains

as compromised).

One common way to fight malicious activities is to build domain blacklists so a

security system can check whether a domain exists on the blacklist and decide on

how to treat the incoming traffic related to that domain [38]. However, this method is

effective when the blacklist only contains the malicious domains because if it includes

the compromised ones, the legitimate services associated with the domains may be

interrupted and cause financial loss.
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At the time of registration, each domain has two possible states: either it is registered

for a malicious purpose or a legitimate one. Then, when the domain is active, there are

three possible states: (1) Benign: the incoming traffic from the domain is benign and

can be passed to users safely, (2) Malicious: the traffic related to the domain should be

considered as malicious and treated differently (e.g., blocked), and (3) Compromised:

an attacker leverages an arbitrary vulnerability to upload malicious content, e.g., a

phishing page. In this way, while the legitimate website is likely to continue serving

benign content to its customers, the attacker benefits from the good reputation of the

website to conduct her phishing attack. Therefore, the traffic related to the domain can

be either malicious or benign.

The existing domain name reputation systems only consider the first two states.

They can detect malicious domains either at registration (e.g., PREDATOR [219]) or

after they exhibit malicious behavior (e.g., EXPOSURE [39]). However, none of them

can detect compromised domains due to two major problems: (1) there is no such state

as compromised at the registration time, and (2) compromised domains may exhibit the

same behavior as malicious domains while they are benign and abused to serve malicious

content. In this regard, domain reputation systems may detect a compromised domain

as malicious and blacklist it [38]. While this method successfully prohibits malicious

traffic, it also blocks the traffic to the legitimate part of the compromised domain. If

such a system identifies a compromised domain as benign, it helps attackers achieve

their goals. Therefore, in both cases, the decision on the state of the domain may cause

collateral damage. For this reason, a complementary system is required to work along

with domain reputation systems to differentiate the compromised domains from the

malicious ones.

Apart from creating effective domain blacklists, distinguishing compromised from

malicious domains is also important for intermediaries involved in the domain name

registration and deployment process. When confronted with a malicious URL, it is crit-

ical to assess the registrant’s intention for registering the underlying domain since the

mitigation action could be different if the registration is for malicious purposes or not.

Regarding Top-Level Domain (TLD) registries, one appropriate action for malicious

domains is domain delisting, i.e., removing the name from the zone file and changing

its status to hold to completely deactivate it [220]. Another appropriate action is to

block access to the domain (domain blocking) or redirect the traffic of the domain to

138



Chapter 6. COMAR: Classification of Compromised versus Maliciously Registered
Domains

another server under the control of authorized entities (also known as domain sinkhol-

ing), which can be done by registrars. The latter is a popular and widely used technique

to identify the victims infected by malware and to reduce its spread [221].

Taking appropriate action against blacklisted domains is also important for hosting

providers since hosting malicious content can adversely affect their reputation [222–225].

Canali et al. studied the reaction of hosting providers when confronted with compro-

mised websites [226]. They showed that in more than 50% of the cases, the reaction of

the hosting providers was to suspend (or terminate) users’ accounts. For large providers,

which may receive hundreds of abuse notifications every day, it is not feasible to manu-

ally investigate each case. Therefore, there is a need for a system that can help hosting

providers identify the compromised domains and differentiate them from the malicious

ones for taking appropriate actions.

Distinguishing between malicious and compromised domains may also lead to re-

vealing the profit-maximizing behavior of attackers. For example, there has been anec-

dotal evidence indicating that miscreants choose to abuse registrars that offer low do-

main registration prices [11,227–229]. However, no study has systematically proved this

conjecture mainly because the existing URL blacklists conflate compromised and ma-

licious domains. One attacker may indeed prefer lower registration prices but, others

may choose to abuse a registrar that offers specific payment methods or a free API

allowing for domain registration in bulk. On the other hand, registrars might offer

cheap domains but, to prevent domain abuse, perform additional checks to confirm the

identity of registrants.

In this chapter, we propose COMAR (Classification of COmpromised versus MAliciously

Registered Domains), a system capable of differentiating compromised (and misused)

domains from the malicious ones to 1) create more effective domain blacklists, 2) help

registries, registrars, and hosting providers to take appropriate mitigation actions de-

pending on the abuse type, and 3) gain better insights into the attackers’ behavior for

choosing candidate domains to hack and intermediaries to abuse.

We thoroughly study the domain life cycle to understand the intentions of both

miscreants and benign users and determine the relationship between each step and its

associated features. We use OpenPhish [230], PhishTank [231], Anti-Phishing Working

Group (APWG) [232], and URLhaus [233] as our initial URL blacklist resources, but

the system is not only limited to phishing or malware feeds. Our results illustrate
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that COMAR achieves high classification accuracy by leveraging only publicly available

data without relying on any privileged resources like historical WHOIS or passive DNS

traffic. We also show how it is possible to compensate for the lack of domain creation

time if there is no access to WHOIS information.

In summary, we make the following contributions:

• We develop a system to classify domains exhibiting malicious behavior as either

compromised or maliciously registered by only using publicly available and readily

accessible resources, and achieve 97% accuracy with 2.5% of false positives.

• We leverage 38 features to identify the state of a domain, 14 of which are new

and have not been used in previous work.

• We introduce a new method to estimate the domain creation time in cases there is

no access to WHOIS information, which outperforms standard statistical methods

in filling missing values.

• We show that content-based features are the most important ones in representing

the domain status.

6.2 Domain Life Cycle

To understand better the intentions of both malicious actors and benign users for

registering and maintaining a domain name, we need to thoroughly inspect the domain

life cycle and determine the relationship between each step and its associated features.

In this way, we can capture the characteristics of the benign but compromised and

malicious domain registration. We divide the domain life cycle into four phases as

follows:

L1. Choosing the domain name. In this phase, both miscreants and benign users try

to register an appropriate domain name based on their needs. Benign users tend to

choose easier to remember, meaningful domain names related to the service provided

by the domain. Malicious actors with the purpose of a phishing attack in mind, may try

to choose a deceptive name to lure benign users and steal their personal information

(e.g., facebook-account.support). In the case of malware C&C panels, miscreants may

choose the names that can be generated by the malware family as part of a domain

generation algorithm (DGA). These domain names are likely to be long and meaningless
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(to increase the chance of availability). We expect spammers to use domains that contain

keywords of the targeted service to effectively persuade users to click on the link to

increase the click rates and search engine ranks (e.g., earn-bitcoin.biz). The knowledge

we gain from this phase can help us to build appropriate lexical features related to the

characteristics of the domain name.

L2. Registration of the domain name. A user (registrant) registers a domain either

through a registrar or a reseller by paying the registration fee. The registration period

can be between one to ten years depending on the registrars and registries (although

shorter registration periods also exist [234]). In this phase, malicious actors tend to

choose less expensive (or free) TLDs to maximize their profit [11, 227–229]. The name

of the registrar, domain creation, and expiration dates are stored by registrars and

registries as part of WHOIS information. The registrant’s information, i.e., the reg-

istrant name, address, phone number, are often obscured and not publicly available

due to the European General Data Protection Regulation (GDPR) [178]. The COMAR

system uses the public part of the WHOIS data as well as TLD-related registration fea-

tures such as retail domain pricing to discriminate between malicious and compromised

domains.

L3. DNS record configuration. After the domain name registration phase, DNS records

should be set up to allow the discovery of the services associated with the domain. Each

resource record provides information about the service behind the domain name. For

example, the DNS ‘A’ record gives the IP address of the server providing the content

for that domain (sometimes, the ‘A’ record points to a reverse proxy server, responsible

for fetching the content from the backend server and delivering it to end-users). The

‘MX’ records point to mail servers whereas ‘DMARC’ and SPF ‘TXT’ records are for

giving the email domain owners the ability to protect their domain from unauthorized

use. Passive DNS datasets (e.g., Farsight Security [235]) come from monitoring DNS

responses and extracting DNS information. For legitimate domains, we expect more

stability and availability of DNS records while for malicious domains, we expect frequent

changes or unavailability of some records (e.g., ‘TXT’, ‘MX’, or ‘DMARC’). COMAR

uses the monitoring approach of passive DNS to construct a feature set, but it does not

rely on passive DNS datasets since they are not always publicly available. We also use

active DNS features by querying blacklisted domains.

L4. Service deployment process and its activity period. This step consists of all the ac-
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Figure 6.1: COMAR system structure.

tivities to set up the necessary infrastructure for the (legitimate or malicious) service

offered by the domain. The activities may include setting up a web server, deploying

the application to manage the web content, or ordering a Transport Layer Security

(TLS) [146] certificate for the domain name to build trust of the service visitors. We

expect that legitimate domain owners put the effort in creating content to increase user

interest and therefore, the website popularity, i.e., the amount of web traffic the site

receives. Miscreants may or may not take the effort of setting up real websites depend-

ing on the type of abuse. We also expect to observe more (vulnerable) libraries and

technologies to build a legitimate website, which is not required for the correct opera-

tion of malicious domains. In this phase, COMAR collects data mainly through a crawl

of blacklisted domains and extracts host-based, popularity, and its most important

content-based features.

6.3 Methodology

Our system comprises three main modules: 1) data collector, 2) feature extractor, and

3) learning and classification modules. Figure 6.1 presents its structure.

The data collector module gathers data related to the domains derived from URL

blacklists. The feature extractor module derives features from the collected data. It can

be further used to support efforts of manual labeling domains as maliciously registered

or compromised. The learning module takes the labeled data on an input to build a
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classifier using an appropriate supervised learning technique. Finally, the classification

module uses the extracted features and the generated model to classify unlabelled

domains derived from URL blacklists in real-time.

6.3.1 Data Collector Module

We use OpenPhish, PhishTank, APWG, and URLhaus as our initial blacklist resources,

but the system is not limited to these URL feeds and can use other types of blacklists

on input.

The system downloads URL blacklists every 5 minutes to one hour (depending on

the blacklist) to get the newly blacklisted URLs. Some URLs are already not operational

by the time they are downloaded (domains are taken down or websites are suspended).

Some URLs do not contain domain names and use IPv4 addresses instead, whereas

some of them use free subdomain services or dynamic DNS services. We use the private

part of the public suffix list [236] to exclude dynamic DNS and free subdomain services

from further analysis. For each remaining newly appeared URL in the blacklist, we

collect the following information:

Technology information. We define technology information as frameworks and li-

braries used to build websites (both client-side libraries like JQuery and WordPress,

and server-side technologies like PHP or ASP programming languages). To extract such

data, we use the Wappalyzer [237] signature list. For each signature in the list, we search

in (a) the URL, (b) HTTP headers, and (c) page content to extract all the libraries

and tools used to build the website.

Page content. For each domain name, we download the corresponding homepage

for further analysis and extracting features. To catch the real content of the domains,

which are behind the reverse proxy service (e.g., Cloudflare) with the anti-DDoS feature

enabled, we emulate the behavior of a real browser to solve the JavaScript anti-DDoS

challenge [238] by using a headless version of the Firefox and Selenium browsers.

Sitemap structure. We further extract all the hyperlinks on the homepage and gen-

erate the tree structure of the domain name. For professionally designed websites, the

sitemap is often stored in the root directory of the website. However, most of the

compromised websites are not well designed, whereas malicious domains rarely have

a sitemap file (even if they do, they are not trustworthy). Therefore, we develop our

crawler to generate a sitemap for domains. For example, Figure 6.2 shows the website
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Figure 6.2: Website structure of a compromised (left) and a malicious domain (right)
with the depth level of 3.

Table 6.1: Features and their characteristics. Feature types are binary (B) or continuous
(C). The availability column shows the availability of features as highly available (high),
medium, or low. The source column shows the features defined by us (new) or appeared
in previous work.

Feature# Type Availability Source
(1) - (3) B High [197], [239], [11]

(4) B High new
(5) C High [240]
(6) C High [39]
(7) C High [241]
(8) B High [242]
(9) B High new
(10) C Medium [223]
(11) B High new

Feature# Type Availability Source
(12),(13) C High new
(14)-(16) B Medium new

(17) B Medium [241]
(18) C Medium new
(19) C Medium new

(20)-(24) C High [243]
(25) B High new
(26) B Medium [219]
(27) C Medium [197]

Feature# Type Availability Source
(28) C Medium [244]

(29)-(31) B High [64]
(32) B High [64]
(33) C High [245]
(34) B High new
(35) C Low new
(36) B Low new
(37) B High [241]
(38) B Medium [246]

structure of two sample domains with 3 levels of depth for compromised (left) and mali-

cious (right) domains. The black node in the center of the image is the homepage of the

domain name. The green nodes are the links to external domain names, the red nodes
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are the links to non-HTML data types such as PDF or ZIP files, whereas the white

nodes are either HTML pages (leaf) or directories (non-leaf). The blue node shows the

malicious page. Having this graph, we can extract various information about the web-

site. For example, the number of internal links to pages with different HTML content

is higher in the compromised domain compared to the maliciously registered domain

because compromised domains have legitimate parts for their users. More importantly,

most of the time, there is no connection between the phishing page and the homepage

in compromised domains since malicious actors do not tend to change the homepage

of the compromised domain. Malicious domains have often a connection between the

homepage (if there is one) and the malicious page.

DNS resource records. For each domain, we actively collect the ‘A’, ‘AAAA’,

‘NS’, ‘TXT’, ‘SOA’, ‘DMARC’, and ‘MX’ resource records. Then, using the Maxmind

database [247], we convert the ‘A’ record to the country code and the autonomous

system number (ASN) for further use. We also extract the sender policy framework

(SPF) [248] rule from the ‘TXT’ record if available.

Host information. The host information module is responsible for collecting all the

host information related to the input domain (and a possible subdomain) at the time of

blacklisting. This information includes the TLS certificates of the domain, the HTTP

headers of the web server, the AS number, and its related organization name.

WHOIS data. We collect and parse the WHOIS data, however, we only use the

domain creation date in our features. Since this field is not available as part of the

WHOIS data for all TLDs, we estimate the missing value based other features (see

Section 6.3.4 for more details).

Screenshots. The lifespan of the blacklisted URLs is short [249]. Therefore, for each

domain, we save the screenshots of the homepage as well as the malicious URL (and a

subdomain if there exists any) for further manual analysis and labeling of domains in

case the website has been taken down by registrars, hosting providers, or miscreants.

6.3.2 Features

The feature extractor module extracts features from the collected data. It operates along

with the data collector in a real-time manner to convert plain data into features. In

total, we extract 38 features divided into seven main categories (feature set F1 through

F7) as presented below:
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1. Lexical features (F1)

2. Ranking system and popularity features (F2)

3. Passive DNS features (F3)

4. Content-based features (F4)

5. WHOIS and TLD-based features (F5)

6. TLS certificate features (F6)

7. Active DNS features (F7)

Table 6.1 shows the characteristics of each feature along with their availability, types

(B: binary or C: continuous), and if they appeared in previous work or are defined by us.

Table 6.2: Lexical features used in maliciously registered domain names.

Domain name Attack type Lexical features
paypala.com Phishing (1) (2) (3)

suportaccount-services.com Phishing (4) (5)
3lf4vlxegj1luy6kbs.com AGD (Rovnix) (6)

erdoypf-inr.net AGD (Redyms) (5)
applid.appsgr.girtrusgirs.com Phishing (7)

6.3.2.1 Lexical features

They are the features extracted from the registered domain (e.g., example.com), the

subdomain (e.g., sub.example.com) as well as the path part of the URL.

Famous brand name in the domain name (f1). We have identified 231 brand

names mostly targeted by attackers in phishing attacks (e.g., PayPal, Amazon, Yahoo,

or Gmail). We have created a list of keywords by manually inspecting phishing pages

and the corresponding domain names. If the domain name consists of one of these

words, it is an indication of maliciousness.

Misspelled target brand name in the domain name (f2). We use dnstwister [250]

to generate possible similar domain names for each of 231 brand names and compare

them with the domain name to check the existence of these words. We also consider

internationalized domain names and convert the unicode characters to their look alike

ASCII equivalent to cover homograph attacks.

146



Chapter 6. COMAR: Classification of Compromised versus Maliciously Registered
Domains

Levenshtein distance of the domain name and targets (f3). We calculate the

Levenshtein distance (LD) between the domain name and every 231 targets on our list.

We choose LD = 1 as the threshold as proposed by Korczyński et al. [11].

Special words but not brand names in the domain name (f4). Some specific

words (e.g., verification, account, support) are not brand names but, based on our word

frequency analysis, miscreants tend to use them as part of the domain name to lure

victims to enter their credentials. We split the domain name into a word list using the

hyphen character. For each word in the domain name, we look for a complete or partial

match of that word and our predefined list of 28 keywords. For example, for the domain

name ‘supportacc-paypal.com’, we have one brand name match (i.e., ‘paypal’) and one

special word match (i.e., ‘support’).

Number of hyphens in the domain name (f5). The only special character that

can be used in a domain name is hyphen (‘-’). Both phishing [240] and algorithmically

generated domain names (e.g., Redyms malware [251]) tend to use hyphens as part of

the domain name.

Digit ratio (f6). AGDs tend to have more digits than legitimate domain names [39].

This feature is more suitable for domains generated by malware families.

Level of subdomains (f7). As miscreants control the DNS records of the malicious

domains1, they can create as many subdomains as necessary for a successful attack [241].

Presence of a brand name in the path part of URL (f8). For compromised

domains for which attackers generally do not have access to the domain zone file to

create new subdomains, the only way for the malicious actors to use the target brand

name is to include it as a part of URL.

Presence of the dot character in the path part of URL (f9). By manual analy-

sis of blacklisted URLs, we have observed that some malicious actors tend to use the dot

character (‘.’) before file or directory names, for example: https://masseffect.co.za/.lilman/

login.php?cmd=submit, which may allow the attacker to deceive an unskilled adminis-

trator who may not notice the hidden malicious content on the compromised system.

For features f1-f6, we only consider the domain name part of the blacklisted URL.

Feature f7 considers the subdomain, whereas f8 and f9 are only related to the path part

of the URL. Table 6.2 shows the use of selected features in various types of maliciously

1In some types of attacks like zone poisoning [252] or domain shadowing [253], it is still possible for
miscreants to change almost any DNS record of a benign domain and generate arbitrary subdomains.
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registered domains.

6.3.2.2 Content-based features

The ultimate goal of domains is to identify a website or a web service that serve content

to their customers in various forms. While it is not trivial to examine the content

validity, yet it is feasible to extract informative content-based features.

Content length (f10). Malicious domains tend to have less content [223]. For this

feature, we only consider the content length of the homepage for each domain part of

the blacklisted URL. If there is no index page for that domain (i.e., default directory

listing page of the web server), or the web server returns any HTTP code other than

the success code (e.g., 404 not found or 403 not authorized), we consider the length to

be zero.

Number of used technologies (f11). Using different frameworks and libraries in

building a website needs time and effort. The more different technologies used in cre-

ating a website, the more time spent on the development. Therefore, we consider the

number of used technologies as an indication of the domain being benign. We crawl

websites to fingerprint software using unique words and patterns found in the source

code. We derive the fingerprints and signatures used in Wappalyzer [254].

Vulnerable technology (f12). It is a binary feature that indicates whether the web-

site uses a technology with at least one known vulnerability. For example, 271 known

vulnerabilities have been found in the WordPress content management system (CMS),

including themes and plugins that enable the attackers to upload an arbitrary file to

the server [255]. Other familiar technologies with known vulnerabilities are Joomla or

Drupal CMSes, and Magenta, PrestaShop, or DotNetNuke frameworks. The intuition is

that if a website uses one of these CMSes, frameworks, modules, or libraries, then there

is more chance to get compromised. To obtain the list of technologies with at least one

reported vulnerability, we use the exploit [256] and vulnerability databases [257].

Number of internal working hyperlinks (f13). The website with some content is

not always benign since miscreants may create fake content on the website so that

it looks legitimate. The easiest way for malicious actors is to clone the content of a

legitimate website. For each internal hyperlink in the homepage, i.e., a page belonging

to the same domain, we fetch the content (only HTML content not files) and calculate

the fuzzy hash as proposed by Kornblum [258] to make sure all the pages are not the
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same and then count the number of unique hashes as the number of working internal

hyperlinks.

Content-related domain name (f14). This feature defines the relationship between

the content of the homepage and the domain name itself. We extract the meaningful

words (based on a dictionary) of the domain name and search for those words in the

visible text of the homepage. It is a binary feature with the values 1 (at least one match

between a word from the domain name and a related word in the textual content) or 0

otherwise. Another approach would be to use the ‘Google trends’ service but it is paid

and difficult to use on a larger scale.

Presence of the index page (f15). It is common for attackers to upload their files to

the web server and just use them without appropriate configuration. In this case, if they

forget to upload an appropriate index page (e.g., index.html, index.php, or index.asp

depending on the server and server-side programming language), the default behavior

of the most web servers (e.g., NGINX or Apache) is to list the directory content. One

possibility is that the attacker could remove the index page from the compromised

domain but it leads to immediate reaction of the webmaster.

Presence of the default index page (f16). The index pages (homepages) of some

domains are the default sites deployed by the registrars, hosting providers, or resellers

after the domain name registration process is complete. Resellers often offer free soft-

ware installation plans like WordPress or Joomla CMSes along with hosting plans. The

whole process of installing a CMS on the server takes a few minutes. Sometimes, at-

tackers leverage these free plans to make the domain looks more legitimate. For each

domain name, we compare the content of the index page with our pre-defined list of

default pages from familiar CMSes and default control panels to check whether the

home page is a default page or not.

Using page redirection (f17). Homepage redirection and web cloaking [259] are two

common methods among attackers to conceal their malicious intention by displaying

benign contents to web crawlers and bots. Regarding homepage redirection, when users

try to visit the homepage of the malicious domain, they will be redirected to a benign

website. In case of phishing, the redirection is mostly to the real website of the phishing

target (e.g., the real Bank of America website). In case of malware domains, it can be

a random website like google.com. To distinguish between page redirection and web

cloaking, we crawl each malicious URL with the Selenium browser and with the Python
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requests library. We set this feature to true if the destination URL of the homepage

requested using both the browser emulation and the requests library shows the same

domain name but it is different from the domain name of the blacklisted URL.

Number of external hyperlinks (f18). This feature works the same way as internal

working hyperlinks but counts the number of hyperlinks that refer to external domains.

Sometimes miscreants, especially in phishing attacks, tend to clone the target website to

perform a more successful attack. In these cases, the cloned website often has hyperlinks

to the real target. Using this feature, we can capture such fake content.

6.3.2.3 Passive DNS features

Passive DNS has become an industry-standard tool for more than a decade. It can give

us insights into how the behavior of a domain changes over time (e.g., changing the

IP address) and how popular the domain name was in the past. Although the features

based on passive DNS data proved to be significant, they can be compensated by other

features without lowering accuracy. Therefore, the absence of this feature set does not

affect the classification results.

First passive DNS query before the blacklist time (f19). The number of days

between the first occurrence of a passive DNS query (for ‘A’ or ‘NS’ records) and the

blacklist time. This feature provides the estimation of the age of the domain in terms

of usage and not only with respect to the registration.

Passive DNS queries (f20-f24). The number of queries for each resource record before

appearing in the blacklist resources (i.e., ‘A’, ‘AAAA’, ‘NS’, ‘MX’, ‘TXT’ records). For

example, the higher the number of observed ‘MX’ queries, the higher the chance that

the domain has an active mail service.

6.3.2.4 Active DNS features

We extract the following features from DNS data queried shortly after the blacklisting

time.

Presence of the sender policy framework (SPF) (f25). ‘TXT’ records are used

(among others) for setting SPF rules [248], domain message authentication reporting

and conformance (DMARC) rules [260], and in some cases for domain ownership ver-

ification by third-party services (like Google App verification). The presence of SPF

for a specific domain can be considered as an indication of legitimacy. For example, a

150



Chapter 6. COMAR: Classification of Compromised versus Maliciously Registered
Domains

domain owner for whom protection against email spoofing is important would set an

appropriate SPF rule in the ‘TXT’ record [261]. Nevertheless, the malicious actors may

also set up SPF rules to increase domain reputation.

Self-resolving name server (f26). Miscreants may use self-resolving name servers i.e.,

name servers responsible for resolving their own domain names (e.g., ns1.domain.com

for resolving domain.com) [219], whereas legitimate users tend to use the default DNS

resolvers of their DNS service providers.

6.3.2.5 WHOIS features

Due to the introduction of GDPR and our requirement that the proposed method should

only depend on publicly available data sources, we only derive the domain creation date

from WHOIS and propose the following feature:

Domain age (f27). The older the domain name, the higher the chance to be legitimate.

However, according to the 2016 APWG report [197], some miscreants age registered

domains waiting weeks or sometimes months before using them. In this way, they can

gain reputation for the domain and bypass the detection methods that work based on

the registration date. However, according to the report, the number of such domains is

low because maintaining a domain name for a long time needs extra effort and money,

not always possible for attackers. We use the time lapse between the domain registration

and the blacklist dates.

6.3.2.6 Ranking system and popularity features

This feature set consists of 8 features related to search engine results, the Internet

Archive [262], and domain name popularity in different ranking systems.

Search engine results (f28). The number of results returned by the Bing search

engine for ‘site:example.com’ queries. The higher the number of results, more popular

the domain is. We do not consider Yahoo and Google search engine results because

although they are free, with publicly available APIs, the number of requests per day

is limited. For example, at the time of writing, the Google custom search engine only

allows 100 queries per day. While the Bing search engine is not free (we used the

trial version), the price ($3/1000 requests [263]) is low compared to its equivalent

alternatives.

Top ranking websites (f29-f32). The presence of the domain name in the Alexa
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[264], Majestic [265], Quantcast [266], and Umbrella [267] top 1 Million website and

domain ranking lists. While we could merge features f29-f32 into a single one based

on the Tranco list [64], each of these ranking systems uses its own metrics to calculate

domain popularity and therefore, captures different characteristics. We only consider

the presence of a domain in such lists as a sign of its popularity.

Wayback Machine (f33). The Internet Archive project started in 1996 by archiving

the Internet itself. The sources of the captures come from different plans of the project,

e.g., capturing Alexa top domains, domains that have at least one link from different

domains that the Wayback Machine already captured at least one time, and several

more plans covering the most part of the Internet [262]. We consider the high number

of captures as a sign of benignness for domains.

6.3.2.7 TLD-related features

Chosen TLD is not random among miscreants [11]. They tend to use TLDs based on

some factors like the TLD price. We extract two features related to TLD.

TLD maliciousness index (f34). It is a number greater than or equal to zero corre-

sponding to the proportion of abused to all registered domains for each TLD introduced

by Spamhaus [268].

TLD price (f35). The price of domains is very important among miscreants since

they want to maximize their profit by minimizing the costs. For example, free TLDs

(i.e., those provided by Freenom) are among the most common TLDs used in phishing

attacks [197,227].

6.3.2.8 TLS certificate features

COMAR uses three features related to TLS certificates.

TLS certificate price (f36). The purpose of making a TLS certificate available free

of cost was to make access to HTTPS available for all websites [269], which means that

miscreants can also benefit from it. By using a TLS certificate, attackers can make

their attacks look more legitimate (e.g., by showing the green lock in the address bar

of the browsers). Free TLS certificates do not either require their owners to provide

any personal information. Therefore, the conjecture is that miscreants would prefer to

choose free TLS certificates rather than the paid ones.

Presence of TLS certificate (f37). Although the report published by Phishlab [270]
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shows that almost half of the phishing websites were hosted on domains with an active

TLS certificate, we can still leverage this feature since our analysis is not limited to

only phishing attacks.

Valid TLS certificate (f38). Trusted but expired TLS certificates or those issued by

untrusted certificate authorities (CAs) trigger an error (or a warning) in most stan-

dard browsers (e.g., Chrome or Firefox). This behavior may alert victims about an

attack. Therefore, most of the phishing URLs are either HTTP or HTTPS with valid

certificates. However, for websites that are used in malware spread or domains for C&C

panels, the victims are not humans but infected machines. Having a TLS certificate let

the infected machines to communicate with their hosts (e.g., bot masters) securely re-

gardless of the validity of the certificates [246]. For each domain, with a TLS certificate,

we define a binary feature indicating whether the certificate is valid or not.

6.3.3 Further Notes on Features

So far, we have introduced 38 features in 7 categories. There are some aspects to consider

regarding these features.

• Not all features are available for domain names but some features rely on the pres-

ence of other ones. For example, all the content-related features are available if there

is a homepage available for the domain name. As another example, a TLS certifi-

cate price solely relies on the existence of a TLS certificate (i.e., the domain should

be HTTPS-enabled). Such dependency enables suitable handling of missing values

discussed below in Section 6.3.4.

• For each type of domain abuse, only a specific set of features may be related to that

type. For example, lexical features (more specifically, URL-based features) are mostly

used in phishing attacks and are not relevant to algorithmically generated domain

names. However, we apply all the features in the classifier and let the classifier decide

the relevance of each feature. Then, by interpreting the results, we can choose the

appropriate feature set for each type of domain abuse.

• Another important aspect of feature engineering is feature evasion, i.e., how robust

each feature is against manipulation. In Appendix 6.10, we discuss potential evasion

strategies and how difficult they are for attackers to deploy.
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6.3.4 Handling Missing Values

Ideally, the classifier operates on a complete ground-truth dataset without missing

values. However, in practice, it is not always possible to collect all the features due

to several reasons. Two important considerations regarding missing values are their

types as explained by Little and Rubin [271], and the reasons for the absence of data.

For example, one important feature in our set is the domain age, which depends on

the availability of the registration date. However, it is not always feasible to parse

the WHOIS data [193]. Some registries do not provide the registration date as part of

WHOIS information or WHOIS data at all (e.g., Freenom registries for .ml, .tk, .ga, or

the German registry for .de). Therefore, the lack of the registration date means losing

important information, which may result in misclassification. The common strategy

to fill missing values is to use statistical methods such as the mean (or median) of

the feature. However, the mean and median values may lead to biased results since

each sample in the dataset (i.e., each registered domain name) is independent of other

samples [272]. Another way to fill missing values is to estimate the best value based on

the available evidence. In the case of the registration date, although we cannot find the

exact date, we can use the earliest day we observed the domain name in the wild. We

use the following formula:

Min
date
{wayback machine, SSL certificate, first pDNS} (6.1)

with respect to the following constraints:

• Regarding passive DNS, we consider the first seen ‘A’ (or ‘NS’) record that matches

the ‘A’ (or ‘NS’) record of the domain name before the time it was submitted to

one of the blacklist resources. The justification comes from the possibility that a

domain name was registered by someone before, then re-registered by another user

(miscreant) and misused.

• Regarding TLS certificates, we use Certificate Transparency logs to retrieve all the

previous certificates of the domain (and subdomains, if any) and extract the issuance

date of the oldest one that matches the certificate of the domain name before the

blacklisting time.

In this way, we obtain the earliest date the domain appeared in the 1) Wayback Machine
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Figure 6.3: Proportion of the domains vs. the difference between real registration dates
and the estimated ones using the proposed method, mean, and median approaches.

[273], 2) Certificate Transparency [274, 275], and 3) the passive DNS database [235],

which ensures that the real domain registration date is earlier than (or equal to) our

estimated value.

Figure 6.3 shows the proportion of the domains for which the difference between the

real registration dates and the estimated ones using the proposed method, mean, and

median approaches is less than 1 year, between 1 and 2 years, and so on. As the ground-

truth data, we use 10,000 domains with different TLDs with known registration dates.

For approximately 67% of the domains, the difference is less than one year, while for

the mean and median, the result is less than 30%. Furthermore, filling the registration

date with the mean for a specific TLD requires to have at least partially the data for

that TLD, while for some TLDs (e.g., .ml, .tk), the responsible registries do not provide

registration dates at all.

Apart from the registration date, there may be some more missing values in our

feature set. For the ‘TLD maliciousness index’, whenever we do not have the data, we fill

the value with zero. For content-related features, we send requests to domains using the

headless version of Selinium and Firefox browsers to mimic user-oriented actions. If we

do not get any response from the server, we can assume that the domain has no content

to offer to visitors. Therefore, we consider ‘content length’, the ‘internal hyperlink’, and

‘external hyperlink’ features as zero. However, in some rare cases, it is possible that

the attack type is location-based that either serves the content to specific IP addresses

or serves different contents to different IP addresses [276]. In this case, due to our

limited resources, we may not be able to fetch the real content. Concerning the TLS

certificate price, our approach is to create a binary feature, paid vs. free. However, for
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some certificate authorities, there is no clear cut boundary between these two options.

For example, Comodo CA [277] (also known as Sectigo) offers both free and paid TLS

certificates for domains. For these CAs, we consider the validity period of the certificate.

If the validity period is less than three months, then we consider the certificate as free.

In Section 6.6, we compare handling of missing values, data availability, and usage

limitations of previously proposed methods with COMAR.

6.4 Experimental Results

In this section, we provide the details of the phishing and malware ground-truth datasets

and describe our method to classify compromised and maliciously registered domains.

6.4.1 Ground-Truth Datasets

We have collected 41,002 URLs from four blacklists. Figure 6.8 in Appendix 6.9 shows

the number of collected URLs for each blacklist and the overlap between them—it is

only the number of working (live) URLs at the time of crawling (March to July, 2019),

after removing URL shorteners, free subdomain services, and inactive URLs. Then,

we have created two ground-truth datasets from the subset of collected URLs with:

1) URLs from phishing blacklists (APWG, PhishTank, and OpenPhish) and 2) URLs

from malware distribution blacklist (URLhaus).

We start with labeling URLs by manually visiting the homepage of the domain and

investigating its content and functionality. It is not always trivial even for a human to

decide if a domain name is compromised or a malicious one. For instance, it is easy to

label ‘pyplcompte.fr’ (without any homepage and one URL to a fake PayPal login page)

as malicious while for ‘afrikfinancialgroup.com’, the domain name does not contain any

suspicious word and the registration time is 2017 but looking at the homepage of the

domain, there is only a database connection error description (Figure 6.4a). The error

can be the result of an attack or it can be just a simple message to fill the homepage

of the maliciously registered domain. To be certain that the chosen label is correct, we

re-visit each domain manually after a period of 10 days and check the homepage and

the presence of the malicious URL again (the hypothesis is that a 10 day period is long

enough for a webmaster to notice that the website is defaced). If the homepage is fixed

after 10 days (see Figure 6.4b), we consider the domain as compromised.
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(a)

(b)

Figure 6.4: (a) The homepage of the ‘afrikfinancialgroup.com’ captured in the first scan
showing a database connection error. (b) The homepage of the same domain name re-
visited after 10 days.

We have manually labeled domains as either 1) maliciously registered, 2) com-

promised, 3) subdomain/free service, or 4) false positive. Although the data collector

module automatically excludes free subdomain services, still some of them, which were

not in our predefined subdomains list, appeared in the labeling process. After remov-

ing subdomain services and false positives (i.e., URLs mistakenly blacklisted) the final

datasets consist of 1,321 domains from phishing blacklists and 1,008 malware domains

from URLhaus. The proportion of the phishing dataset is 58% malicious - 42% com-

promised and for the malware dataset 57% compromised - 43% malicious.

6.4.2 Classifier

We use two classification methods: 1) Logistic Regression and 2) Random Forest. We

apply each method separately on the malware and phishing datasets. We choose the

methods because of their characteristics. Logistic regression is a machine learning algo-

rithm that works on linearly separable data and uses the combination of the weighted

input features to predict the output class. It is a parametric method known for its effi-

ciency, low computational resources, and interpretability. However, feature engineering

plays an important role with respect to its performance. On the other hand, the random

forest is a non-parametric machine learning algorithm capable of training a non-linear

model based on the input samples. Generally, it does not need any feature transfor-

mation or any assumption about the underlying mapping function. With a sufficient

number of training samples, it may result in a better performance model compared to

logistic regression [278]. As for evaluation metrics, we use accuracy, precision, recall,
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Figure 6.5: Evaluation metrics of phishing (top) and malware (bottom) datasets using
logistic regression.

F1-score, and Matthews correlation coefficient (MCC) defined in Appendix 6.8. We use

the MCC metric since our datasets are not completely balanced and we also need to

consider false positives and false negatives in the final results of the classifier.

Table 6.3 shows the results of the random forest (RF) and logistic regression (LR)

classifiers for phishing and malware datasets. We can notice that the classification

results of the random forest are slightly better than logistic regression for both datasets.

However, we use logistic regression to describe the data and explain the relationship

between input features and output classes since it can produce interpretable coefficients.

Figure 6.5 shows the classification results by applying logistic regression on the

phishing and malware datasets, and eliminating one feature set at a time. We set the

maximum number of iterations to 10,000, using 10-fold cross-validation to evaluate the
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Table 6.3: Evaluation of the Random Forest (RF), Logistic Regression (LR), and the
APWG method on phishing and malware datasets.

Method DB Acc Precision Recall F1 MCC
RF Phish 97% 95% 97% 96% 0.93
LR Phish 96.5% 96.59% 95% 95.7% 0.92

APWG Phish 85% 82% 93% 88% 0.69
RF Mal 96% 97% 96% 97% 0.92
LR Mal 94.5% 95.6% 95.2% 95.4% 0.89

algorithm and ridge regularization to create a less complex model and avoid overfit-

ting. The classification error is the sum of false positives and false negatives. A false

positive refers to the malicious domains misclassified as compromised and a false nega-

tive refers to the compromised domains misclassified as malicious ones. We can observe

that removing content-based features can severely affect the results of the classifier

both in phishing and malware datasets, and increase the classification error up to 16%

and 30%, respectively. On the other hand, removing the passive DNS feature set has

almost no effect on the final results (Acc: 96.14%, Precision: 95.78%, Recall: 94.91%,

F1: 95.34%, MCC: 0.92 for phishing datasets). Moreover, content-based features are

more important for malware samples than phishing. The reason is that most of the

maliciously registered domains related to malware spreading or C&C panels have no

content in their homepages.

6.5 Evaluation of the Results

In this section, we first compare our results with the simple approach used in the

2016 APWG phishing survey [197] to distinguish between malicious and compromised

domains. Then, we study the features extracted and used in the classification process.

We analyze the ‘strength’ of each feature (i.e., how it is related to each output class) and

select those with the highest impact on the classification results. This section provide

a better insight into how we can select the features to create a more effective classifier.

We also present three case studies that may influence the classification results.

6.5.1 Comparing COMAR with APWG Method

In the 2016 global APWG phishing survey [197], Aaron and Rasmussen used a simple

set of heuristics to distinguish maliciously registered from compromised domains in
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phishing attacks. They considered a domain to be malicious if it was reported within a

very short time after registration and/or contained a brand name and/or was registered

in a batch or there existed a pattern indicating common ownership or intent. Since we

do not have access to the registrant’s information in the WHOIS data to detect batch

registration or any pattern of common intent, we use only the first two conditions to

evaluate the APWG method on our ground-truth data. The report did not specify the

exact meaning of the ‘very short time of being registered’, so we chose three months as

it is used in the previous study [11]. If the domain has appeared in a blacklist in less

than three months of its registration time, or if it has a famous brand name/string in

its name, we consider it as a malicious one otherwise it is categorized as compromised.

Table 6.3 shows the classification results of the APWG method. Although the ac-

curacy of the result is relatively high (85%), the false-positive rate is also very high

(27%), which results in low MCC (69%). The reason for the high false-positive rate is

that the method is unable to detect malicious domains that were registered more than

three months before blacklisting and that have no famous brand name or a misleading

string as part of the domain name.

In general, there are three limitations of this and other methods that use the reg-

istration date as the main feature for classification. As discussed in Section 6.3.4, the

registration date is not always available for all TLDs. Therefore, the evaluation is lim-

ited to TLDs with the registration date available as part of the WHOIS data. The

second drawback is that identifying patterns or evidence of bulk registrations need reg-

istration information such as the registrant’s name and the address no longer publicly

available [178]. Finally, the third caveat of using this heuristic is the fact that it does

not consider legitimate domains compromised in the first few months or even days after

registration.

Figure 6.6 shows the partial cumulative distribution of the compromised domains

after their registration date. We collect the data of hacked websites for 18,810 domains

from various resources like accounts of the hacker groups on Facebook, Twitter, and

hacking forums for 2 months. The results show that 12% of the domains get com-

promised in the first three months of their registration, and approximately 32% get

hacked in the first year after registration probably because of the lack of appropriate

configurations or because the website is still under active development. These types

of domains may lead to false-negative results (classifying newly registered benign but
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Figure 6.6: Partial cumulative distribution of the compromised domains after registra-
tion.

compromised domains as maliciously registered). However, COMAR does not suffer

from these limitations since it does not heavily rely on the registration dates (only one

feature out of the other 38 proposed ones), and we estimate the missing values of the

domain registration dates for TLDs that do not provide the WHOIS data.

6.5.2 Feature Analysis

By using logistic regression, we can measure how important individual features are

to the overall performance. Table 6.4 and 6.5 show the logistic regression weights for

24 most significant features. We use the L2 norm regularization to keep the weights

small to avoid overfitting and reduce model complexity. Moreover, small weights help us

making sure that one feature with a large value cannot heavily affect the final classifier

result. We also use log transformation for some features (e.g., ‘number of Bing result’)

to increase the linearity between the input features and the output class. The sign of

each coefficient shows the relationship between the feature and the compromised output

class. For example, the ‘TLD maliciousness index’ feature has a negative relationship

with the compromised (and a positive relationship with the malicious) output class.

Therefore, a higher maliciousness index of TLD indicates a higher probability of a

domain being maliciously registered rather than compromised.

We can observe that the ‘number of internal hyperlinks’, ‘number of Bing search re-

sults’, ‘number of technologies’, and ‘content length’ features are in the top five strongest

features indicating compromised domains for both malware and phishing datasets. The

‘number of internal hyperlinks’, ‘number of technologies’, and ‘content length’ features

are content-based and capture the effort the owner (legitimate or malicious) put into

creating a fully-featured website. The results support the conjecture that attackers

spend less time to deploy a fully-functional website with rich content since it is time
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Table 6.4: Logistic regression coefficients of the significant features for the phishing
dataset.

# Feature Category Weights
1 fnumber of internal hyperlink Content-based 1.88
2 fnumber of technology used Content-based 1.28
3 fBing search result Ranking 1.26
4 fcontent length Content-based 0.98
5 ffirst PDNS before blacklist Passive DNS 0.78
6 fnumber of PDNS MX Passive DNS 0.56
7 fTLD maliciousness index TLD-based -0.56
8 fdomain aging WHOIS-based 0.49
9 fusing redirection Content-based -0.46
10 fhas vulnerable tech Content-based 0.41
11 fpresence of index page Content-based 0.39
12 fwayback machine captured Ranking 0.30
13 fURL has famous brand name Lexical 0.28
14 fis content related Content-based 0.21
15 fspecial word in domain name Lexical -0.18
16 fnumber of external hyperlink Content-based -0.17
17 fusing HTTPS SSL-based 0.15
18 fusing brand name in domain name Lexical -0.12
19 fpresence of default homepage Content-based -0.10
20 fhas SPF Active DNS -0.07
21 fself-resolve NS Active DNS -0.05
22 fpresence in quantcast Ranking 0.03
23 fusing misspelled brand name Lexical 0.03
24 fpresence in umbrella Ranking 0.02

consuming. Content-based features play an important role in the classification: 5 out of

10 most significant features are content-based. The ‘number of Bing search results’ is

related to domain popularity, which reflects the conjecture that malicious domains are

less popular than compromised domains since they have legitimate traffic generated by

benign users.

Another interesting feature is ‘number of external hyperlinks’ with different signs

for phishing and malware datasets probably because phishers tend to copy the entire

HTML code of the target website to create the exact look and feel experience, and most

of the time, the cloned HTML code contains hyperlinks related to different pages of the

target website. On the other hand, malware domains (e.g., algorithmically generated)

often have less (or no) content, which leads to less (or no) external hyperlinks. Therefore,

in this case, having an external hyperlink is the indication of a compromised domain.
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Table 6.5: Logistic regression coefficients of the significant features for the malware
dataset.

# Feature Category Weights
1 fnumber of technology used Content-based 0.87
2 fnumber of internal hyperlink Content-based 0.84
3 fcontent length Content-based 0.82
4 fBing search result Ranking 0.74
5 fTLD maliciousness index TLD-based -0.72
6 fnumber of PDNS MX Passive DNS 0.50
7 fwayback machine captured Ranking 0.50
8 fpresence of index page Content-based 0.19
9 fnumber of external hyperlink Content-based 0.18
10 fdomain aging WHOIS-based 0.16
11 fhas vulnerable tech Content-based 0.14
12 fpresence of default homepage Content-based -0.14
13 fself-resolve NS Active DNS -0.13
14 fis content related Content-based 0.11
15 fpresence in umbrella Ranking 0.05
16 fusing HTTPS SSL-based 0.05
17 ffirst PDNS before blacklist Passive DNS 0.04
18 fusing redirection Content-based 0.04
19 fURL has famous brand name Lexical 0.02
20 fusing brand name in domain name Lexical 0.01
21 fpresence in quantcast Ranking 0.01
22 fusing misspelled brand name Lexical 0.01
23 fspecial word in domain name Lexical 0.0
24 fhas SPF Active DNS 0.0

For URL-based features (e.g., ‘URL has famous brand name’), we observe a signif-

icant decrease from phishing dataset to malware dataset because URL-based features

are mostly related to phishing attacks. For example, the weight of ‘URL has famous

brand name’ is 0.28 for phishing while it is 0.02 for the malware dataset.

Considering ranking and popularity features, the presence of the domain name in

four ranking websites (i.e., Alexa, Quantcast, Majestic, and Umbrella) has a weak

association with the output class in favor of compromised domains in both datasets.

Although these features are less significant and it is not difficult to manipulate these

ranking lists [64], still using these features combined with others can provide more

accurate results.

The ‘presence of HTTPS ’ feature has a small weight in the phishing dataset (0.15)

and near zero (0.05) for the malware dataset, which is not surprising since more than
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Figure 6.7: Distribution of the ‘internal hyperlink’* (top-left), ‘number of technologies’
(top-middle), ‘Bing search results’* (top-right), ‘content length’* (bottom-left), ‘number
of passive DNS MX’* (bottom-middle), and ‘TLD maliciousness index’ (bottom-right)
features in phishing datasets. Y-axis is log-transform for *.

58% of the phishing attacks used TLS certificates in the first quarter of 2019 according

to the phishing activity report [279]. Therefore, the presence of a TLS certificate cannot

be considered as a strong feature to distinguish malicious and compromised domains

due to the popularity of using TLS certificates among both attackers and legitimate

users.

Figure 6.7 shows the distribution of six selected features for each output class for

the phishing dataset. For better representation of the distribution, we use logarithmic

scales for the ‘Bing search result’, ‘number of passive DNS for MX’, ‘content length’,

and ‘number of internal hyperlink’ features. For example, in Figure 6.7 (bottom-left)

the average length of the homepage content for compromised domains is greater than for

maliciously registered domains. Looking at Table 6.4, the weight of the ‘content length’

feature is 0.98 in favor of compromised domains, which means that more content on

the homepage is an important characteristic of the benign but compromised domains.
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6.5.3 Case Studies

In this section, we present three case studies that may influence the classification results.

The first one is related to website defacement when an attacker changes the visual

appearance of a website by replacing the index page of the domain. To the best of

our knowledge, the second case presents a new technique observed in phishing attacks

for the first time. Finally, the third case is related to domain dropcatching in which

attackers register expired benign domains to take advantage of their residual trust.

6.5.3.1 Case 1: Homepage Defacement

It concerns a compromised domain name registered back in 2017 but detected by CO-

MAR as malicious. We manually investigated the results, visited the homepage of the

domain, and compared it with the data and screenshots from the data collection pro-

cess. When we found the domain name in the OpenPhish blacklist, the homepage of

the domain name was defaced and the content replaced by following HTML code:

<html><head></head>

<body>dddddddd</body>

</html>

The COMAR classifier uses 9 content-based features (as explained in Section 6.3.2.2).

With the replaced homepage, COMAR was not able to extract features effectively,

therefore, misclassified the domain as malicious (with the probability of 67.1% in favor

of the malicious class).

As a matter of fact, this result is one of the drawbacks of the content-based features.

If we do not fetch the real content of the domain for any reason, the classification results

are uncertain. However, homepage defacement is very rare since attackers tend to keep

the homepage of the compromised domains as intact as possible to avoid early detection

by the website owners.

6.5.3.2 Case 2: New Anti-Phishing Evasion Technique

Phishers always look for new techniques to extend the lifetime of the phishing pages

by evading anti-phishing bots and detection systems. One of the best ways to do so is

to use defense techniques like page redirection, web-cloaking or server-side techniques

like filtering famous user agents like googlebots or known scanners IP addresses [280].
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As mentioned in Section 6.4.1, we scan each URL and domain twice, within ten days

in between, to make sure that the state of both URL and the domain in the labeling

process is correct. During our scan, we noticed an URL labeled as safe by Google

safe browsing in both scans. Since the URL was in the Phishtank blacklist, which is

a community based URL blacklist based on user reports, we had to manually check

it to avoid a false positive. By visiting the URL, we noticed that the attacker used

Google CAPTCHA to hide the real content of the malicious page. Therefore, even the

browser emulation technique was not able to fetch the real phishing content unless a

human solves the CAPTCHA manually. Figure 6.9 in Appendix 6.11 shows the website

homepage, the phishing page protected by Google CAPTCHA, and a fake PayPal

login page for phishing the user’s credentials. Although COMAR classified correctly

the domain as compromised (since we do not use any feature related to the content

of the phishing URL), any phishing (fraud) detection system based on the content of

the phishing URL cannot probably automatically fetch the page content. This is the

first time we observe an evasion strategy using one of the strongest counter-attack

techniques (CAPTCHA). Using techniques like CAPTCHA by phishing attackers may

raise a serious challenge to security vendors in detection of malicious pages.

6.5.3.3 Case 3: Domain Dropcatching

Domain dropcatching is the practice of registering a domain name once it is expired and

released for new registration [281]. In this process, it is possible for miscreants to register

an already expired benign domain name and inherit its residual trust. Miramirkhani

et al. [281] showed that approximately 10% of the dropped domains are picked and

registered by attackers for malicious purposes. The problem with these domains is

that while they should be treated as newly registered domains (as they are), some

of the features will match the original registration leading to misclassification of the

domains as compromised. The feature sets concerned by drop-caught domains are TLS

certificate, passive DNS, and ranking and popularity features. To show the effect of

domain dropcatching, we compared the domain registration date with the date related

to the first observed DNS query in DNSDB and the first captured page in the Wayback

machine only for domains manually labeled as malicious. Whenever the date of the first

captured page in the Wayback machine or first seen DNS query is older than the real

registration date, we consider the domain as a drop-caught one. In this way, we found
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7 samples in our dataset, 6 of them correctly classified as malicious.

Then, we applied the classifier two times on the samples: first, by removing passive

DNS features (since they are affected by dropcaching and COMAR does not heavily rely

on them) and then, by removing content-based features (since they can be relatively

easily evaded and may affect classification). COMAR misclassified 1 and 2 samples

(out of 7 samples) in the first and second experiment, respectively. While the number

of samples is not enough to evaluate the generalizability of the method in the context of

domain dropcaching, we assume that the benign history of the domain may mislead the

classifier. We believe that this situation can be worse when attackers clone the content

of the original website using the Wayback machine (we have not observed such a case

in our dataset).

To reduce the negative impact of the drop-caught domains on the classifier, we could

improve the Bing search engine result feature (f28) by only retrieving the results for

a specific time slots i.e., after the registration date. Regarding the Wayback machine

(f33), we already count only the number of captured pages after the domain registration

date. However, passive DNS features and the TLS feature set are still heavily affected

by the benign history of the domain and in the worst case scenario, attackers could

also consider bypassing content-based features by cloning the content of the original

website.

6.6 Related Work

Detecting malicious activity from URLs. Several authors proposed techniques in

this category, which makes it one of the most prevalent research topic in the field. The

main purpose of these methods is to detect phishing pages and malware C&C panels

using machine learning techniques. In case of phishing attacks, Jain and Gupta, for

example, proposed a machine learning approach that uses a set of 20 features to identify

the input URL as malicious or legitimate [282]. Tian et al. proposed a combination of

visual and content-based features to detect phishing attacks [283]. Their assumption is

that even if attackers can evade content-based features by using obfuscation techniques,

the final appearance of the phishing page should be the same as the target to persuade

users to enter their credentials. Tan et al. proposed a phishing detection technique using

lexical, URL-based, and content-based features combined with the Google search engine
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results to detect phishing URLs [284]. However, in a large scale detection system, it

is not feasible to use the Google search engine due to the limitation of the number of

requests [285]. COMAR uses some of the features from the above mentioned systems

but the primary goal of COMAR is not to detect the malicious content of the URL

since we create the domain classification system on top of already blacklisted URLs.

Detecting maliciously registered domains. Several effective methods have been

proposed in this category. Although the ultimate goal of these methods is not the same

as in COMAR, it might still be possible to apply some of the techniques on each do-

main in the URL blacklists and potentially identify the malicious ones. NOTOS [38] is

a reputation system based on passive DNS queries to rank input domains. It extracts

41 features in three categories: 1) network-based, 2) zone-based, and 3) evidence-based

features. Except for two features related to the lexical characteristics of the domain

name itself, all other ones are derived from the IP address associated with the domain.

NOTOS calculates the reputation of IP addresses, networks, and autonomous systems.

Therefore, if the domain is behind a reverse proxy system (e.g., CloudFlare [286]). NO-

TOS is unable to capture the true IP address and instead, it calculates the reputation

of the network related to the reverse proxy rather than the reputation of the true net-

work that hosts the domain. Another limitation is that it needs a large passive DNS

dataset to perform well. COMAR does not rely on passive DNS queries and even by

excluding passive DNS features, it can still obtain high accuracy with low false positive

rate. PREDATOR [219] is a proactive recognition method to detect maliciously regis-

tered domains at the time of registration. It uses lexical features, IP-based features, and

batch registration patterns to identify malicious domains. PREDATOR suffers from the

same limitation as NOTOS in confronting reverse proxies. It also heavily uses WHOIS

information and historical WHOIS data, which makes it only practical at registries that

have access to such data. Le Pochat et al. proposed an automated method for classi-

fying maliciously registered, algorithmically generated domain names and benign ones

that accidentally collide with AGDs, within the constraints of the real-world takedown

context of the Avalanche botnets [26]. MENTOR [287] is a system designed to remove

benign domains from a blacklist of C&C domains. Both COMAR and MENTOR look

for features related to the benign parts of the domains. While the goal of COMAR is

to use these features to identify a domain as compromised, the goal of MENTOR is to

distinguish benign domains (that are not abused) from malicious ones. One important
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caveat of MENTOR is the training and testing datasets. The authors used top 500

domains in the Alexa ranking list as the benign dataset. To form the malicious dataset,

they used domains from various blacklists double-checked with the Google safe browsing

(GSB) system. However, top 500 domains in the Alexa list are professionally designed,

well-structured websites, which make them inappropriate to be used as fair samples of

the benign domains in the wild. Moreover, for the malicious training set, if a domain

is labeled by GSB as ‘not safe’, it does not necessarily mean that the domain name is

completely malicious, since the goal of the GSB system is to detect malicious content

(also hosted on benign but compromised domains) rather than malicious domains.

Detecting malicious activity on compromised domains. The main purpose

of these methods is to detect malicious activity on compromised domains. Rao and Pais

proposed a technique based on Google search engine queries to detect phishing activity

[288]. Apart from the limitation of the number of queries, during the manual labelling

of the domains in our dataset, we observed that most of the compromised domains are

low ranked websites and many of them had been compromised in the first month of

their registration and never got indexed by search engines. Corona et al. [289] proposed

11 content-based features along with image similarity combined using a fusion classifier

to detect phishing URLs on compromised websites. We leverage some of their features

in our work. However, our ultimate goal is not to detect phishing URLs but to classify

domains as maliciously registered or compromised ones. Le Page et al. [245] proposed a

method to classify maliciously registered domains and compromised ones. They used 15

features in three categories of lexical (5 features), domain name popularity (3 features),

and 7 features related to the Internet Archive. Their results show that features derived

from the Internet Archive perform the best among all features. However, relying heavily

on the Internet Archive may lead to generate feature vectors with a considerable number

of missing values since there is, high likely, no archive history for newly registered

domains compromised in a short period after their registration.

6.7 Conclusion and Future Work

In this chapter, we present COMAR, a system capable of distinguishing maliciously

registered from compromised domains. COMAR leverages publicly available data and

makes classification decisions based on the extracted features. Registries, registrars,
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and hosting providers can use it to decide on appropriate mitigation actions for each

domain with malicious content. It can also serve as an effective tool for creating domain

blacklists from the existing URL ones.

We show that the content-based features are the most effective in capturing the

‘amount of benignness’ of domains during their life cycles. We examine features regard-

ing their robustness and the possible ways attackers can bypass them. High cost and

effort for attackers complicates the evasion from COMAR and may therefore discourage

malicious actors.

We introduce a new technique to compensate missing values in the ‘domain reg-

istration date’ field of the WHOIS data that outperforms the existing methods. We

also show that approximately 12% of the domains get compromised in the first three

months of their registration, which suggests that domain reputation systems based on

the domain age cannot distinguish maliciously registered from compromised domains

with high accuracy.

We plan to deploy COMAR at two European registry operators: SIDN (.nl domains)

and AFNIC (.fr domains) and set up an early notification system to contact the owners

of compromised domains and domain registrars for maliciously registered domains.

We also plan to correlate the concentrations of maliciously registered domains with

a specific registration policy (prices, available payment methods, etc.) at the time of

the domain creation. We intend to systematically distill a set of registration features

preferred by attackers and analyze individual campaigns as well as long-term trends.
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Appendix

6.8 Evaluation Metrics

We use the following metrics to evaluate our machine learning algorithms.

Accuracy =
T P + T N

T P + T N + F P + F N
(6.2)

P recission =
T P

T P + F P
(6.3)

Recall =
T P

T P + F N
(6.4)

F 1 − score =
2T P

2T P + F P + F N
(6.5)

MCC =
T P × T N − F P × F N√

(T P + F P )(T P + F N)(T N + F P )(T N + F N)
, (6.6)

where TP, TN, FP, FN are the number of true positives, true negatives, false pos-

itives and false negatives, respectively. Compromised domains are considered positive

and maliciously registered domains negative. Accuracy is the ratio of the number of

correct predictions to the total number of input samples. Precision means the percent-

age of relevant results. Recall refers to the percentage of total relevant results correctly

classified by the algorithm. The F1 score is the harmonic mean of precision and recall.

The Matthews correlation coefficient (MCC) [290] is a measure of the quality of

binary classification. The return value of MCC is between -1 and +1 which +1 repre-

sents a perfect prediction, 0 means random prediction and -1 means total disagreement

between the predictions and true labels. The advantages of MCC over accuracy and

F1-score is that it considers the size as well as the imbalance of dataset. Most impor-

tantly, MCC takes into account true and false positives and negatives (all the entries

of the confusion matrix not only true-positives and true-negatives).

6.9 Phishing and Malware Datasets

Figure 6.8 shows the Venn diagram of the collected URLs from a) URLhaus, b) APWG,

c) OpenPhish, d) Phishtank, and the overlap between them.

171



Chapter 6. COMAR: Classification of Compromised versus Maliciously Registered
Domains

Figure 6.8: Venn diagram of the collected URLs from four blacklists.

6.10 Evasion Techniques

In Section 6.1, we discussed the appropriate mitigation actions for compromised and

maliciously registered domains by different intermediaries. For malicious domains, one

recommended action is to take down the domain or suspend the hosting service related

to that domain. This action may generate extra costs for malicious actors (losing the

domain name or the hosting service), which makes it a good reason to avoid their domain

being classified as maliciously registered. However, manipulating COMAR features also

requires extra effort. In this section, we examine the possibility of feature evasion and

associated costs. We take into account i) the amount of money the attackers should pay

to bypass a specific feature, ii) the amount of time the attacker should spend to evade

each feature and, iii) the necessary skills the attacker should have to bypass a feature.

Generally, it is safe to consider external features as more difficult to evade compared

to the features under the control of the attacker. For example, manipulating search

engine results, the Wayback Machine as well as passive DNS data are more difficult

compared to content-based or lexical features in case of maliciously registered domains.

However, it does not necessarily make external features completely bulletproof against

manipulation. Furthermore, any feature with a one-time cost (either in terms of time

or money) for the attacker cannot be considered as robust.

Content-based features. In Section 6.5.2, we show that content-based features are
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among the best ones, yet most available in our set. Through this feature set, we exploit

the benignness of the domain by analyzing 1) the length of the generated content on the

homepage of the domain, 2) the relationship between the homepage and other (possible)

pages related to that domain (i.e., the number of internal and external hyperlinks), 3)

the amount of effort required by the domain owner to design a professional websites (i.e.,

the number of technologies that are used to create the website), and 4) the number of

technologies prone to attacks. We now consider possible evasion techniques the attacker

can use to bypass content-related features.

1. Content length and hyperlinks. To bypass the content length feature (f10), the

attacker needs to generate lengthy content either manually (which is not feasible

in large-scale attacks) or automatically through third-party applications. The same

methodology can be applied to features related to internal and external hyperlinks

(i.e., f13 and f18). Wang et al. [291], studied the effectiveness of black hat search

engine optimization (SEO) campaigns to evaluate the possibility of manipulating

search engine results for specific keywords by generating fake contents and leveraging

various linking strategies. This method can be used to evade features related to the

content length and hyperlinks but it requires a fair amount of effort and costs not

always available for the attacker.

2. Technology-related features. As mentioned in Section 6.3, we use Wappalyzer

to enumerate the technologies used by the domain owner to design the website.

Wappalyzer is a fast, free, easy to use, signature-based tool able to extract the

used technologies by partial string and regular expression matching. Unfortunately,

it is also easy to evade. For example, using PHP as a server-side programming

language, the default name for the session ID stored as a cookie in the client machine

is ‘PHPSESSID’. Wappalyzer uses this name to decide if the server-side code is

PHP or not. Therefore, it is possible to mislead Wappalyzer and force it to make a

wrong decision on the server-side language just by changing one keyword in cookies.

However, decisions can be made using more advanced techniques e.g., hash-based

fingerprinting [292].

Overall, to evade content-based features, the miscreant must establish a fully-

functional website with different content and hyperlinks related to the domain name

itself either manually, which takes time, or automatically, which impose additional
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Figure 6.9: Home page of the compromised domain (a), Google reCAPTCHA with a
fake PayPal logo (b), and a fake PayPal login page for phishing user’s credentials.
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costs on them.

Ranking and popularity features. Manipulating features in this category is not

completely under control of the attacker as it represents an external feature. However,

it is feasible for a sufficient amount of time and effort.

1. Regarding the Wayback Machine, the attacker can manually submit URLs related

to their domains to the Internet Archive project [293].

2. Regarding the Bing search engine results, using SEO techniques (e.g., black hat SEO

as explained earlier [294]), it is possible to increase the number of indexed pages for

each domain name in search engines.

3. Regarding top ranking websites (e.g., Alexa ranking system), previous research

shown that it feasible to manipulate them [64].

However, the cost of evading ‘ranking and popularity’ features is related to the

expertise and amount of time the attacker should spend to make her domains as

popular as it is necessary to evade the COMAR classifier.

TLD and WHOIS features. COMAR uses one WHOIS-based feature (i.e., ‘domain

age’) and two TLD-based features (i.e., ‘TLD maliciousness index’ and ‘TLD price’).

1. To evade the ‘domain age’ feature, the attacker should register domains long time

before using them since we use the number of years before blacklisting, which imposes

costs in terms of money on the attacker as she needs to register or re-new the domain

for a period of a few years to evade this feature.

2. ‘TLD maliciousness index’ is another strong feature of COMAR to decide on the

state of a domain. One of the factors affecting the value of this feature is pricing.

Cheap TLDs (or the free ones) have a higher ‘maliciousness’ value compared to the

expensive TLDs [11, 268]. A higher value of the maliciousness index increases the

chance that the domain name is maliciously registered. Therefore, to avoid being

detected by the COMAR classifier, the attackers should register domains with TLD

suffixes with low maliciousness values, which means they should pay more money.

Lexical, passive, and active DNS features.
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1. Lexical features are relatively easy to evade. For malware distributors, the domain

name is not important since the victims that download the malicious content from

the website are not humans but infected machines. However, for phishers, the choice

of the domain name is relatively important to conduct a successful attack. For ex-

ample, insta-support.com is more appealing to lure Instagram users compared to

the name that has no indication of Instagram.

2. Regarding active DNS features, it is feasible to setup a mail server and/or define,

for example, SPF rules in ‘TXT’ records. However, for attacks performed at a larger

scale, the process needs automation.

3. Passive DNS features are the most difficult to evade as the sensors are distributed all

around the world. Attackers are not aware of their locations and even if they were,

it is not trivial to inject a large number of DNS packets as the monitoring sensors

are placed above the local recursive resolvers.

6.11 Captcha Evasion Technique

Figure 6.9 shows a compromised website hosting a phishing page protected by Google

CAPTCHA to prevent anti-phishing bots from accessing the malicious page content

(details in Section 6.5.3.2).
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7.1 Introduction

On November 30, 2016, a global consortium of law enforcement agencies and Internet

stakeholders completed a four-year investigation aimed at dismantling the Avalanche

infrastructure [295], which has been called “the world’s largest and most sophisticated

cybercriminal syndicate law enforcement has encountered” [296]. For seven years, this

‘bulletproof hosting service’ [297] offered services to cybercriminal operations through

a ‘crime-as-a-service’ model [296], fully managing all technical aspects of carrying out

malware attacks, phishing, and spam campaigns. It supported a botnet of a massive

scale: Avalanche was responsible for two thirds of all phishing attacks in the second half

of 2009 [298], and ultimately affected victims in over 180 countries with estimations of its

monetary impact reaching hundreds of millions of euros worldwide [299]. The takedown

operation in 2016 was supported by authorities from 30 countries and culminated in five

arrests, 260 servers being taken offline and the suspension of over 800,000 domains [295].

As part of this dismantling, a large domain takedown effort sought to disable the
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botnet’s communication infrastructure. This effort targets the large sets of domains

that the malware families of Avalanche generate through domain generation algorithms

(DGAs). Through this ‘domain fluxing’ [300], infected hosts attempt to contact all

generated domains, whereas the botnet master only needs to register one to continue

operating the malware, decreasing the likelihood of blacklisting and takedown. How-

ever, as security researchers have reverse-engineered several of these DGAs [300], law

enforcement is able to identify upfront which domains the malware will try, after which

these can be blocked or seized. Over four yearly iterations of the Avalanche takedown,

more than 4.3 million domains were thus prevented from being abused, making it the

largest domain takedown so far [301].

Previous work related to DGAs focused on detecting malicious domains in regular

traffic, relying on strong indicators of ongoing malware activity, to discover new malware

families or find infected hosts inside a network [302–304]. In this paper, we address the

orthogonal issue that the Avalanche takedown faces: given – presumably malicious –

DGA domains that will be generated in the future and should proactively be taken down,

we seek to detect those that accidentally collide with benign domains. In particular, we

assess how we can effectively support law enforcement investigators with an automated

domain classification to inform the appropriate takedown action in a real-world use

case. This reduces the extensive manual effort previously invested in this classification,

while still maintaining the high accuracy required in such a sensitive operation. Taking

down benign domains may cause prejudiced service interruption and harm their owners.

At the same time, we have to guarantee that no malicious domain is left untouched, as

this would allow malicious actors to target infected users once again.

We are the first to develop an approach that can be used to effectively identify

the domains registered with malicious intent, within the constraints of a real-world

takedown operation. First, bulk patterns no longer apply, both for domains that are

benign (due to the accidental uncoordinated collisions) and malicious (due to the low

number of required domains). Second, as the takedown is proactive, we cannot search

for malicious activity (any ongoing activity would mean that infected machines are im-

plicated in actual attacks and defeat the proactive purpose of the takedown). Third, we

cannot actively contact domains so that the takedown can occur stealthily (otherwise

attackers could evade detection and undermine the takedown). Instead, we rely on cap-

turing more generic differences in how benign and DGA-generated malicious domains
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are registered and operated.

We design a machine learning-based model for classifying benign and malicious do-

mains, and we evaluate it on ground truth from the 2017 and 2018 iterations. Using

a human-in-the-loop approach that combines automated classification and manual in-

vestigation targeted at the most difficult domains, we achieve an accuracy of 97.6% for

the real-world Avalanche use case, ensuring high correctness while still vastly reducing

manual effort: in the 2019 iteration, our approach reduced this effort by 76.9%. How-

ever, we go beyond reporting this metric with an extensive analysis of the benefits and

limitations brought by the machine learning approach as well as the real-world setting.

We provide an interpretation for the factors that impact the decisions of the model,

giving insight into how the owners of benign and malicious domains behave differently

and how the model uses this information to make decisions. These insights can help

law enforcement in their choices regarding the acceptable performance and reliability

of the model.

Malware creators increasingly employ techniques that make the takedown of their

command and control infrastructure more complex, and the scale of malicious oper-

ations continually increases. Further automation of the takedown process with our

classifier of malicious and benign domains can support law enforcement in coping with

the increased complexity. However, we need to carefully design, evaluate, and analyze

such an approach to cope with the constraints of a real-world application as to avoid

any adverse effect on the legitimacy of the operation. This enables law enforcement to

continue disrupting malware infrastructure and protecting potential victims.

In summary, our contributions are the following:

• We assess to what extent an automated approach can assist law enforcement

investigators in correctly detecting the collisions with benign domains among

registered domains implicated in the Avalanche takedown, without the ability to

rely on bulk malicious registrations, ongoing malware activity or actively collected

traffic.

• We develop a technique where we complement a machine learning model with

targeted manual labeling of the most informative and difficult domains, to main-

tain performance across multiple takedown iterations while still vastly reducing

the required manual investigative effort.
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• We evaluate how well this approach performs and transfers for the 2017 and

2018 takedowns: we obtain an accuracy of 97.6%. The predictions of our model

were used in the 2019 takedown, and we find a subsequent reduction in manual

investigative effort of 76.9%.

• We critically examine the factors that impact the performance and decision-

making process of our model. We find that time-based features are the most

important ones, which at the same time are the most costly to evade. In terms

of data set availability, WHOIS data greatly improves accuracy, which shows its

importance for conducting effective cybercrime investigations.

7.2 Background

7.2.1 Domain generation algorithms

Machines in a botnet such as Avalanche communicate with the malicious actor through

command and control (C&C) servers. Early malware hard coded the domain names or

IP addresses of their C&C servers, so it was easy to obtain this information and either

blacklist the servers or even take over the corresponding infrastructure (by pointing for

instance the domains to ‘safe’ IP addresses and/or having hosting providers take C&C

servers down), effectively stopping the malware from further malicious operation [305].

Malware has therefore evolved from hard coding the C&C server information to dy-

namically creating or updating it.

One technique of this dynamic approach is ‘domain fluxing’, in which domain gener-

ation algorithms (DGAs) create up to thousands of algorithmically generated domains

(AGDs) every day [300]. The malware will then attempt to contact these domains and

ignore the unavailable ones: the botnet owner therefore only needs to set up one of the

generated domains to host a C&C server [305]. Avalanche combined this technique with

‘fast fluxing’, in which compromised machines hosting a proxy to the C&C server as

well as the corresponding DNS entries of the AGDs rapidly switch [306], thus further

evading blacklisting and takedown [295].

DGAs take as seeds parameters known to both the malware owner and the infected

host, so that they both generate the same set of domains [300,305]. These parameters

such as the length of domains, top-level domains (TLDs) to use, or seeds for pseudo

random number generators can be hard coded. More complex algorithms may depend
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Table 7.1: Examples of domains generated by Avalanche DGAs.

Domain Malware Validity
1 0a85rcbe2wb5n5fkni4i4y[.]com CoreBot Jan 21, 2018
2 researchmadness[.]com Matsnu Jan 28-31, 2018
3 arbres[.]com Nymaim Mar 9, 2018
4 sixt[.]com Nymaim always

on time: one of the inputs to the DGA is then the current time, either from the system

clock or retrieved from a common source (e.g., GET requests to legitimate sites [307]).

In this way, the DGA creates domains having a certain validity period: the time frame

during which the seed timestamps make the DGA generate that domain, which the

infected machines then attempt to reach. For Avalanche malware families, these validity

periods range from 1 day (e.g. Nymaim) to indefinitely (e.g. Tiny Banker).

We can further distinguish between deterministic DGAs that know all parameters

upfront and non-deterministic DGAs that know some parameters only at the time

of generating the domains: e.g., the DGA of the Bedep family uses exchange rates

as seeds [308]. Avalanche did not use any non-deterministic DGAs so for successfully

reverse-engineered DGAs [300,309], we can generate all potential AGDs ahead of their

validity, by varying the timestamp that serves as input to the DGA.

Table 7.1 lists example names generated by DGAs, from malware hosted by Avalanche.

While Example 1 appears random (a long name with many digits and no discernible

words), certain DGAs generate names that look much more like legitimate domains.

Example 2 shows a name generated based on a word list yielding domains that may

correspond to a regular domain name. Example 3 shows a short yet randomly gener-

ated name for which there is a high probability of generating either a valid word or a

plausible abbreviation. These last two examples have a high probability of generating

domains that collide with existing benign domains.

Finally, certain malware families alter domain resolution on the infected host, gen-

erating traffic to hard-coded and otherwise benign domains that actually resolve to

malicious IP addresses to circumvent domain-based filters [310]. While these domains

are not algorithmically generated, they are present in malware code and traffic and

must therefore also be classified as part of the takedown operation, to distinguish them

from other hard-coded and actually malicious domains. Example 4 is one such instance
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using the domain of the Sixt car rental site. We include these domains in our classifi-

cation, but for brevity, we refer to all domains to be classified as the ‘registered DGA

domains’.

7.2.2 Taking down the Avalanche infrastructure

The perpetrators behind the Avalanche infrastructure offered two services for rent by

cyber criminals: registering domain names as well as hosting a layered network of proxy

servers through which malware actors could control infected hosts and exfiltrate stolen

data [309]. Avalanche thereby supported the operation of 21 malware families [311],

controlling a botnet of an estimated one million machines at the time of takedown [309].

Prosecutors completed the first iteration of the takedown in November 2016, where

the whole infrastructure was dismantled through arrests, server seizures, and domain

name takedowns [295]. For the latter, the first iteration targeted live C&C domains,

but also those that would be generated by the DGAs in the coming year, preemptively

blocking these to prevent Avalanche from respawning. This effort has been repeated

every year since, as in January 2020 infected machines on over two million IPs still

contacted the Avalanche network [312], highlighting the potential damage if Avalanche

were to respawn.

Coupled with the large number of malware families and the extensive amount of

domains that these DGAs generate, this results in a large number of DGA domains

to be processed. For the three yearly iterations from 2016 to 2018, this amounts to

around 850,000 domains per year [301, 311], while the 2019 iteration looks ahead five

years and therefore treats almost 2 million domains: this means more than 4.3 million

targeted domains have been processed in total. For the DGA domains in the Avalanche

takedown, law enforcement took one of three actions on the takedown date [313]:

• Block registration: for a not yet registered domain, the TLD registry blocks registra-

tion. This is the case for the vast majority of domains.

• Seize domain: for a domain registered by a seemingly malicious actor, it is seized

from the original owner and ‘sinkholed’, i.e. it is redirected to servers of the Shad-

owserver Foundation. Optionally, domains are also transferred to the “Registrar of

Last Resort”. Through sinkholing, law enforcement can then track how many and

which infected hosts attempt to contact the domains [312] and aid in mitigation
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Table 7.2: Number of benign and malicious domains per iteration. *: according to our
classification.

2017 2018 2019–2024*
Benign 1397 1014 4945

Malicious 1145 402 1053
Classified 2542 1416 5998
Sinkholed 1177 594 2293

Total 3719 2010 8291

through notifications to network operators and infected users [314]. Domain seizures

require a legal procedure such as a court order, while organizations could also request

a takedown through a ‘takedown notice’ [315].

• No action: for a domain registered by a seemingly benign actor (including domains

sinkholed by other security organizations), no action is taken by law enforcement

and the domain remains with its original owner.

7.3 Problem statement

7.3.1 Making accurate takedown decisions

The aim of the Avalanche takedown is to prevent the botnet owners from interacting

with infected machines by blocking access to the required domains that the DGAs will

generate in the year following the takedown. However, as these DGAs may generate

labels that collide with benign sites, performing a blanket takedown of all generated do-

mains would harm legitimate websites. For Avalanche, public prosecutors therefore first

had to manually classify domains into benign and malicious: as shown in Table 7.2, they

had to determine an appropriate action for a few thousand registered DGA domains

each year.

For registered domains, an incorrect decision may have unintended adverse ef-

fects [315, 316]. In case of the seizure of a benign domain, its legitimate owner can no

longer provide its service to end users. Owners may experience lengthy downtime, as

challenging an illegitimate seizure and regaining the domain can be an opaque and dif-

ficult process [315,317]; it appears that this also holds for Avalanche domains [318,319].

Conversely, not preemptively seizing a malicious domain allows the botnet to respawn

and continue its malicious operation: as the takedown does not remove the malware
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Table 7.3: Overview of goals and strategies for the differentiation of benign and mal-
ware/DGA domains.

Context/Detection goal Individual
patterns

Proactive
analysis

No active
connections Related work

Active malware domains
within regular traffic 7 7 3 [303,322,323]
Likely DGA domains
within regular traffic 7 7 3 [324–326]
Future malicious domains
at registration 7 3 3 [327–329]
Benign domains within
known malware domains 3 7 7 [330]
Benign domains within
future DGA domains 3 3 3 Our work

from infected machines, these will continue to establish contact with DGA domains.

Once the botnet owners can obtain such a domain, the attackers can launch new attacks

or spread malware to additional hosts. The takedown efforts, intended to permanently

stop the malware, are then effectively spoiled.

Manually classifying all DGA domains is a resource- and time-consuming process,

where due to ‘decision fatigue’ [320,321], the mental effort in making repetitive decisions

could lead to biases. Given the severe consequences of incorrect classifications, our goal

is to develop an automated approach to the classification of DGA domains that performs

with high accuracy, in order to relieve human investigators from manual effort as much

as possible. At the same time, this does not preclude a manual review of those domains

that are the hardest to classify or that could have the most significant effects. In the

analysis of our approach in Section 7.5, we quantify how such a union of automated and

manual classification can still lead to a significant reduction in required effort. Through

such a reduction in manual effort and time, we can ensure the correctness of takedown

decisions, thereby minimizing negative effects on website owners as well as end users.

7.3.2 Constraints for distinguishing malicious and benign domains

While our base goal is to distinguish malicious and benign domains, we cannot use

previously proposed solutions as they rely on certain indicators that would not work

for the Avalanche use case. Concretely, these indicators no longer hold for malicious

domains (e.g. bulk registration), cannot be observed by us (e.g. detecting malware

activity), or are counterproductive (e.g. alerting the attacker). Table 7.3 summarizes

how the different contexts, goals and strategies of previous works do not fully satisfy
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our requirements.

The reason is that the assumptions made in previous work no longer hold due

to a different balance between malicious and benign domains: instead of detecting

domains with clear malicious behavior among a (large) set of regular traffic, we assume

that domains are malicious (they would be contacted by malware) and need to detect

benign domains (i.e. accidental collisions). While in previous approaches, domains that

do not exhibit strong indicators of maliciousness (offered by the former) are benign,

the absence of such indicators in our use case means that we may not make such an

assumption, and makes those previous approaches ineffective for Avalanche.

We translate these unique characteristics of the Avalanche takedown into three con-

straints. First, we need to take the characteristics of benign domains into account as

well, by developing appropriate features that capture individual differences in registra-

tion and configuration. Second, as we cannot leverage ongoing malware activity itself,

we need to develop features that allow for a proactive analysis. Third, attackers may

not evade or detect data collection, so we may not make any active connections to

domains in order to remain stealthy. In this section, we elaborate on these challenges

and differences that make previous approaches ineffective for our use case.

7.3.2.0.1 Individual registration and configuration patterns Previous work

often assumes that specific (bulk) patterns in the setup of domains indicates malicious-

ness.

For example, PREDATOR [328] relies on the observation that in order to evade

blacklisting, malicious spam domains are registered in bulk (over 50% in groups of

ten or more at one registrar in five minute intervals), causing these temporal clusters

to be similar in infrastructure, lexical composition and life-cycle stage. In a similar

spirit, Premadoma [329] relies on similarities in registrant data and the prevalence of

malicious domains at specific facilitators (such as registrars) to detect sustained large-

scale malicious campaigns. However, these patterns are no longer usable for our set of

domains. Attackers only need to register one of the domains that the DGA outputs at a

given time, so they no longer need to register domains in bulk, as is necessary for spam

domains, also reducing the likelihood that they share e.g. registrars. Figure 7.1 confirms

this: 93.5% of malicious domains in the 2017 and 2018 iterations of the Avalanche

takedown are registered in clusters of fewer than 10 domains at their given registrar in
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Figure 7.1: Cumulative distribution of registration counts for a given day and registrar,
for malicious domains from the 2017 and 2018 iterations.

one day (as opposed to the five minute interval in PREDATOR [328]). Moreover, the

accidentally colliding benign sites do not have any relationship and will therefore not

share any properties either.

Systems such as DeepDGA [325] and FANCI [324] detect DGA domains from lin-

guistic patterns in their label. However, we know that all domains are either generated

by a DGA or hard coded in malware, so it would be incorrect to use such patterns to

categorize them as malicious.

In summary, because of the characteristics of our domain set (singular malicious

and unrelated benign domains, all output by a DGA), many of the assumptions that

the above approaches make on patterns that determine maliciousness are no longer

valid. We must therefore resort to capturing more generic, common registration and

configuration patterns for individual domains. These patterns should not only capture

‘obvious’ maliciousness, but also properties that indicate benignness.

7.3.2.0.2 Proactive analysis Previous work relies on observing ongoing malicious

behavior: e.g. Exposure [323] leverages irregular DNS configurations and access patterns

to detect ‘domain flux’ [306]; Pleiades [303] captures patterns in NXDOMAIN responses

to DNS queries by active malware. These systems rely on ongoing malware activity

that generates the analyzed traffic. Similarly, systems that use only the label to detect

DGA candidates based on their appearance [324–326] need ongoing malware activity,

otherwise infected hosts are not contacting malicious domains that are then visible in

traffic.

Crucially, because malicious domains have to be taken down before they can cause

any harm, we have to classify them proactively, i.e. before infected machines would
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actively query the malicious domain. This distinguishes our work from the above works,

as we cannot analyze and rely on patterns within any (ongoing) malware activity. While

we can and do use features similar to those from previous systems, we are restricted

to detecting patterns in registration, configuration, and regular traffic. Moreover, we

already know that a DGA generated the domains that we have to classify, meaning

that we start with an assumption that the domains are malicious.

7.3.2.0.3 No active connections to domains Internet measurements can be

classified into two groups: passive collection, where already ongoing traffic is observed,

and active collection, where new traffic is injected into the network. Notos [322] and Ex-

posure [323] are examples of systems that analyze patterns in passively collected DNS

queries. In contrast, Mentor [330] relies in part on website content features to mea-

sure positive domain reputation, requiring active and targeted data collection through

crawling the domains.

While we have a similar goal to Mentor of detecting benign domains within presum-

ably malicious domains, we avoid including features that require us to actively connect

to domains. Malicious actors are namely known to detect active scanning and respond

differently to appear more benign (‘cloaking’) [331], and could thus mislead our classifi-

cation. More broadly, such probes could alert them of efforts to investigate and disrupt

malicious infrastructures, allowing attackers to shift their approach or hide any traces to

avoid repercussions [309]. A stealthier analysis without targeted active data collection

therefore avoids endangering the effectiveness of ongoing investigations [323,332].

7.3.3 Ground truth data

The advantage of our collaboration with law enforcement is that we can use their manual

classification of benign and malicious domains from the takedown as a trustworthy

source of ground truth. Previous studies mostly rely on publicly available blacklists and

whitelists as the labeled ground truth [333], but malware blacklists have been found

to contain benign parked or sinkholed domains and are ineffective at fully covering

domains of several malware families [334], while lists of popular domains commonly

used as whitelists can easily be manipulated by malware providers [64].

However, the real-world context of the Avalanche takedown affects the composi-

tion of our ground truth data. Concretely, our data set is relatively small, as seen in
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Table 7.2. Plohmann et al. [300] have seen a similarly small proportion of registered

domains among DGA domains. We can expect this number to be small: malicious ac-

tors only need to register few domains, as the malware will try all DGA-generated

domains; conversely, benign actors are less likely to be interested in using the often

random-looking domains generated by the DGAs. Previous studies are able to evaluate

their approach on much larger data sets, albeit self-constructed and arbitrarily selected.

Nonetheless, training on a small data set is a challenge that prosecutors would also face,

and our analysis is therefore valuable for informing them on the feasibility, constraints

and benefits of an automated approach for such a practical use case.

7.3.4 Ethical considerations

We use the data set of the Avalanche takedown shared with us by our law enforce-

ment partner. We augment this data with third-party data, avoiding unnecessary

active probes of both benign and malicious domains. However, given the sensitivity

of the former and commercial agreements for the latter, we cannot share this data

with external parties. We release the data processing scripts and resulting models at

https://github.com/DistriNet/avalanche-ndss2020 to support reproducibility.

We assisted law enforcement agencies by applying our approach to the 2019 Avalanche

iteration. While the use of machine learning for law enforcement purposes may be con-

tested [335], human investigators may similarly make involuntary errors, e.g. due to

‘decision fatigue’ [320,321].

7.4 Data set analysis and feature extraction

To determine a suitable takedown action for algorithmically generated domains (AGDs),

we search for relevant features providing a full view of their properties over time. We

then create a classifier that detects whether patterns in these properties are more likely

to correspond to a benign or malicious domain without having to rely on ongoing

malware activity.

In this section, we first analyze how different data sources can track different stages

of the domain life cycle and we discuss the insights on how features capture contrasting

properties of benign and malicious domains. Then, we select the final set of features

and discuss the reasons for omitting certain features.
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7.4.1 Life cycle of a domain

To correctly identify the intent of a domain registration, we need to observe patterns

in the domain life cycle, as they indicate who obtained the domain, how they use it,

and how they value it. For each identified step, we determine which relevant features

capture the actions of the domain owner and list sources that track this information.

Through our analysis, we can then ensure that our selection of features and data sets

appropriately covers each step.

L1. Choice of the domain name The prospective owners of a domain (the reg-

istrants) must first choose the domain name that they want to purchase. Usually, the

name is chosen to be easily memorized, sufficiently short, and representative of the

service provided by the domain, but as malicious actors will need to produce domains

in bulk, they will generate them automatically. The resulting names have a random or

patterned appearance that we can capture in lexical features on the label itself in order

to automatically detect DGAs [324,325,336].

L2. Registration of the domain A registrant registers a domain through a reg-

istrar, typically paying a registration fee for at least 1 year [337] (although free and

shorter offers exist [338] that tend to attract abuse [339]). The registrant identity, the

registrar used, and the timestamps of the registration start and end are then made pub-

licly available in the WHOIS database. We can then extract the registration patterns

to distinguish benign and malicious sites [340]. Due to privacy concerns and regula-

tions (e.g., the European General Data Protection Regulation), the publicly available

identity of the registrant may be obfuscated: the real identity is then only available

to the registrar and the top-level domain (TLD) registry. This data may be leveraged

in collaborations with registries, e.g. for detecting malicious domains at registration

time [329,341].

L3. DNS configuration Once a domain has been registered, its entry in the Do-

main Name System (DNS) must be configured to allow discovery of its services using

the domain name. The nameserver is passed onto the TLD registry and will appear

in its zone files. The domain resource records configured in the nameserver zone file

then become available for querying. Active DNS data sets (collected by e.g., Open-
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INTEL [342]) rely on scanning zone files or popular domains to obtain these records,

while passive DNS data sets (collected by e.g., Farsight Security [91]) extract them from

monitored DNS responses. Both types of data sets have been used to detect malicious

domain registrations and activity [323,343,344].

L4. Setup of the service infrastructure The main purpose of a domain name

is usually to provide a service for which an infrastructure needs to be set up. The

records stored in DNS may reveal the hosting infrastructure or third-party service

providers (e.g., cloud providers) from which actors that enable malicious activity can

be derived [345,346]. A scan of open ports accompanied by “banner grabs” may reveal

provided services and the content available through the service may reveal its purpose.

Such an operation requires active probing of the domain, which either can be executed

ad hoc or is already performed regularly by e.g. Censys [347] and Project Sonar [348],

whose scale enables analyses of botnet devices [349]. Furthermore, certificates obtained

by the domain owner for their service may also be tracked in Certificate Transparency

logs [350].

L5. Service activity Once the service is set up, end users can start interacting with

it. Traffic to the service may be logged either at the server, the client, or in any network

in-between. These logs can then be analyzed for multiple purposes. Malicious behavior

can be detected and publicly shared in blacklists [334,346,351]. Commercial providers

publish lists of the most popular websites that become base sets of seemingly benign

domains [64]. The service may be crawled to populate search engine results or archive

web content [352]: the latter enables longitudinal analyses of malicious activity [346,

353,354]. These methods can be combined to calculate risk scores for the domain [355].

L6. Service unavailability and domain expiration The unavailability of the

services offered by the domain, either intentionally or unintentionally due to miscon-

figurations, may be detected by any of the previously discussed data sets depending on

the type of disruption. Once a domain is no longer needed, it may expire: domains that

are set to expire are often monitored for drop-catching [356], i.e., registering domains as

rapidly after expiry as possible. Malicious actors also reuse previously expired domains

to capitalize on the reputation of those domains [357,358]. Alternatively, a service may

be interrupted or a domain may be made unavailable for legal reasons, e.g., in takedown
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operations. As we study domains before they would be taken down, we do not consider

this last step in our final feature set.

Table 7.4: Overview of the features used in our classifier. We indicate which outcome
(benign or malicious) a higher or true value denotes and how the feature covers the
domain life cycle and insights.

Set # Description Type Outcome Life cycle step
(Section 7.4.1)

Insight
(Section 7.4.2) Source

Lexical 1 Domain name length Continuous Malicious L1. Domain choice i1. Likelihood [303]
2 Digit ratio Continuous Malicious L1. Domain choice i1. Likelihood [323]

Popularity

3 Number of pages found in Wayback Machine Continuous Benign L5. Activity i3. Popularity New
4 Time between first entry in Wayback Machine and takedown Continuous Benign L5. Activity i3. Popularity New
5 Time between first entry in Wayback Machine and start of malware validity period Continuous Benign L5. Activity i3. Popularity New
6-9 Presence in Alexa, Majestic, Quantcast, and Umbrella top websites rankings Binary Benign L5. Activity i3. Popularity [359]

CT 10 TLS certificate found in Certificate Transparency logs Binary Benign L4. Infrastructure i2. Investment New

WHOIS

11 Time between WHOIS creation date and start of AGD validity period Continuous Benign L2. Registration i2. Investment New
12 Time between WHOIS creation date and start of malware family activity Continuous Benign L2. Registration i2. Investment New
13 Time between WHOIS creation data and takedown date Continuous Benign L2. Registration i2. Investment [360]
14 Time between WHOIS creation date and WHOIS expiration date Continuous Benign L2. Registration i2. Investment [330]
15 Renewal of domain seen in WHOIS data Binary Benign L2. Registration i2. Investment [328]
16 Domain uses privacy/proxy service Binary Malicious L2. Registration i2. Investment New
17 WHOIS registrant email is a temporary/throwaway email service Binary Malicious L2. Registration i2. Investment New
18 WHOIS registrant phone number is valid Binary Benign L2. Registration i2. Investment New

Passive DNS

19 Number of passive DNS queries Continuous Benign L5. Activity i3. Popularity [359]
20 Time between first and last seen passive DNS query Continuous Benign L5. Activity i3. Popularity [359]
21 Time between first seen passive DNS query and takedown Continuous Benign L5. Activity i3. Popularity New
22 Time between first seen passive DNS query and start of AGD validity period Continuous Benign L5. Activity i3. Popularity New
23-29 Presence of passive DNS query for resource record: A, AAAA, CNAME, MX, NS, SOA, TXT Binary Benign L5. Activity i3. Popularity New

Active DNS
30 Time between first seen DNS record and takedown Continuous Benign L3. DNS config. i2. Investment New
31 Time between first seen DNS record and start of AGD validity period Continuous Benign L3. DNS config. i2. Investment New
32-36 Number of days DNS record was seen for resource records A, AAAA, MX, NS, SOA Continuous Benign L3. DNS config. i2. Investment New

7.4.2 General insights

We want to design features that exhibit contrasting properties of benign and mali-

cious domains and therefore provide a more accurate classification, while still acting

within the constraints imposed by the Avalanche takedown use case (as outlined in Sec-

tion 7.3.2). This requires insights into the generic differences in behavior of legitimate

and malicious actors with respect to their domains. We choose our features to capture

the following three characteristics:

i1. Likelihood of collisions Given that all domains are algorithmically generated,

our target is to find “regular” (least random) looking domains as they are more likely

to be a collision with a benign domain, which is opposite to other work that focuses

on detecting DGAs solely based on how random their domain names appear [324,325,

336,361].

i2. Investment in the domain Obtaining and (validly) maintaining a domain re-

quires an investment from its owner, both monetary for paying the registration fee

and in effort for setting up DNS and WHOIS records correctly and installing services

attached to the domain. While benign owners value their domains and are willing to
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make such an investment, the opposite is true for malicious actors: they want to set up

a campaign with minimal cost and effort to maximize their revenue. Certain indicators

imply high investment, such as long-term registration (benign domains tend to be older,

while malicious domains tend to be registered shortly before the start of the validity

period [300, 323, 360, 362]) or valid DNS and WHOIS records (invalid, obfuscated or

repeated values hint at malicious practices [341]).

i3. Website popularity Establishing a website that attracts sufficient traffic and is

therefore perceived as popular, requires significant effort in creating content and build-

ing an audience. Website popularity is therefore an indication of benignness: malicious

actors will not make the effort of setting up real websites on dormant domains, espe-

cially as it is not required for the correct operation of botnets. Regular users as well as

web crawlers are also unlikely to end up on these domains. Moreover, if the domain has

not yet been generated by a DGA, its traffic is low or non-existent, so we can assume

that any traffic that the domain draws is legitimate.

7.4.3 Summary of feature sets

We aim to capture the broadest view possible of the life cycle of the domains to classify,

and select the features and the data sources that provide their values accordingly,

further inspired by our general insights. While potentially useful, certain features are

not applicable to our use case or would have unwanted consequences for required data

collection or wider applicability of our approach. We elaborate on the reasons for not

retaining these features in Section 7.4.4.

Table 7.4 gives a summary of the 36 features that we compute. We distinguish

between six feature sets: for each feature set, we describe what it represents, which

features it includes, how it is obtained, and how complete its coverage is. We indicate

for each feature 1) whether it is binary or continuous, 2) whether our intuition is that

higher or true values indicate a benign or malicious domain,1 3) which life cycle step

from Section 7.4.1 it covers, and 4) which insight from Section 7.4.2 is illustrated.

For each domain, we know the start and end dates of their validity period, i.e. when

their respective DGA would generate the domain. We also retrieve the date when a

malware family started being active from DGArchive [300], where available.
1Note that this is only an intuition—our classifier can detect edge cases that provide contrary

evidence.
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7.4.3.0.1 Two lexical features capture the linguistic structure of the domain name.

We compute the domain name length, as shorter domains tend to be more popular and

expensive, and the ratio of digits in the domain name, as domains with more digits

tend to be less readable. Both features discard the TLD.

7.4.3.0.2 Seven popularity-based features capture whether a domain hosts a web-

site that appears to attract regular visitors. Three features use data obtained through

the Wayback Machine API2: the number of unique pages captured on the domain, the

time between the first capture of any page and the takedown, and the time between

this first capture and the start of the AGD validity period.

Four features capture whether the domain is present at any point in time in the

Alexa3, Majestic4, Quantcast5, and Umbrella6 top websites rankings. These rankings

serve as an approximation of popularity from different vantage points: web browser

visits, incoming links, tracking script/ISP data, and DNS traffic, respectively. Although

they can contain malicious domains and are susceptible to malicious manipulation [63,

64], we assume that presence in these lists still serves as a reasonable indication of

benign intent. We retrieve historical data from an archive of historical top websites

rankings [64].

7.4.3.0.3 One Certificate Transparency feature captures whether Certificate Trans-

parency logs contain a certificate that was valid on the date of the takedown, i.e. whether

the owner had obtained a TLS certificate for the domain. The feature in this set uses

data obtained through an API from Entrust7, which tracks Google Certificate Trans-

parency logs [363]. Certificate Transparency logs have the most complete coverage of

issued TLS certificates [364]. Recent browser policies that enforce logging further in-

crease uptake [365].

7.4.3.0.4 Eight WHOIS features capture the registration cycle of a domain as well

as registrant details. We base four features on the time between the WHOIS creation

date and the start of the AGD validity period, the start of malware family activity,
2https://archive.org/help/wayback api.php
3https://www.alexa.com/topsites
4https://majestic.com/reports/majestic-million
5https://www.quantcast.com/top-sites/
6https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
7https://www.entrust.com/ct-search/
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the takedown date, and the WHOIS expiration date respectively. For an additional

feature, we compute whether the domain has been renewed at least once by the latest

registrant, i.e. we find at least two records with different expiration dates.

We capture the validity of registrant data in three features. We determine if the do-

main uses a privacy/proxy service (replacing real registrant data with generic data) by

checking for keywords (e.g. “privacy”, “proxy”) in the WHOIS registrant records. While

legitimate users may prefer to use such a service to hide personal information [366],

malicious domains also tend to use these services [367]. We also determine whether the

WHOIS registrant email is a disposable address: as the email account can no longer be

accessed after some time, this indicates that the owner does not consider the domain

to be important. We test non-default/non-proxy email addresses against a manually

curated list of disposable domains8. Finally, we check whether the WHOIS registrant

phone number is valid: malicious actors would not want any trace leading to their real

identity and therefore resort to fake (e.g., automatically generated) contact information.

We test the validity of phone numbers using an API from numverify9.

WHOIS-based features are based on historical data generously provided to us by

DomainTools10. To observe long-term and renewed registrations, we obtain historical

records spanning their full data collection period. The data reflects a state before the

introduction of the European General Data Protection Regulation, so it contains more

domains with publicly available contact details. We elaborate on the continued avail-

ability of such details in Section 7.6.2.

7.4.3.0.5 Eleven passive DNS features capture both the period and frequency of

DNS resolutions for a particular domain, providing a viewpoint on both domain age

and popularity. We retrieve the number of passive DNS queries: when more queries

(for any resource record) have been made for the domain, the domain appears to be

more popular. We base three features on the time between the first seen passive DNS

query and the last seen query, the takedown date, and the start of the AGD validity

period respectively. Finally, we record the presence of at least one passive DNS query

for resource records A, AAAA, CNAME, MX, NS, SOA, and TXT: more (requested) record types

with a value indicate proper domain setup and usage.

8https://github.com/ivolo/disposable-email-domains
9https://numverify.com/

10https://whois.domaintools.com/
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The features in this set use passive DNS data generously provided to us by Farsight

Security11. We retrieve aggregated data spanning the full data collection period (i.e.,

since 2010 [91]). For each resource record value seen, the aggregated data contains the

number of queries and the timestamps when it was first and last seen.

7.4.3.0.6 Seven active DNS features capture the availability of DNS records for a

particular domain. We base two features on the time between the first seen DNS record

and the takedown date, and the start of the AGD validity period respectively. We also

record the number of days any DNS record value was seen for resource records A, AAAA,

MX, NS, and SOA.

The features in this set use active DNS data generously provided to us by the Open-

INTEL12 project [342]. We cap the data period at 333 days (i.e. starting from January

1 of the relevant year). While OpenINTEL collects data actively, it complies with our

requirement that we do not contact domains ourselves. Moreover, data collection is not

targeted at specific domains, yet sufficiently comprehensive to also capture most of the

registered Avalanche domains as it covers full zone files.

7.4.4 Omitted features

Given our use case of proactive takedowns, we cannot consider features that try to

detect ongoing malicious operations directly, as the maliciously registered domain does

not yet necessarily exhibit such behavior at the time of the takedown: malicious actors

can leave these domains dormant right until a DGA generates the domain and in-

fected hosts start contacting the domain. This means for example that we do not verify

whether a C&C server is running on the domain and do not check malware blacklists.

Approaches for detecting AGDs, especially per single domain, are often based on

lexical features that seek to discover patterns unlikely to occur in “human-generated”

domain names [324,336]. However, all of our candidate domains have been generated by

a DGA, which leads us to use only a limited set of lexical features to find the domains

that are more likely to be potential collisions (short and few digits).

Detecting patterns from DNS logs [362] that indicate fast flux services [306], often

used by command and control servers, is not applicable as the malicious domains would

only start operating in fast flux during the validity period of the AGD.
11https://www.farsightsecurity.com/solutions/dnsdb/
12https://www.openintel.nl/
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Following our observation from Section 7.3.2 that bulk patterns do not apply for

malware domains, we do not use approaches and features that rely on clustering do-

mains [303] and batches of similar registrations [328], such as timing patterns or shared

registrars.

The type of network could be an appropriate feature to take into account while

the domain is active [362], with more trust in government or business networks hosting

benign sites and domains in residential networks potentially being hosted by an infected

machine. However, as a maliciously registered domain does not yet have to be actively

malicious before the DGA generates the domain, its IP address can easily be set to a

benign network (without the need for that network to actually host the domain) [368],

thereby misleading our classifier.

Data collected through a crawl of candidate domains such as properties of the

site content could indicate legitimately used domains [330]. However, following our

stealth constraint from Section 7.3.2 and due to the need for historical data, we cannot

do an active crawl of domains ourselves. We also cannot rely on existing third-party

repositories of website crawls (e.g. the Internet Archive [369], Common Crawl [370] or

Censys [347]): they do not provide historical data, do not crawl sufficiently regularly

to capture recent data, do not have a consistent set of crawled domains and/or do not

have sufficient domain coverage. Their data would therefore not be comprehensively

representative of domain web content at the time of the takedown.

We do not include the malware family as a feature: as Avalanche provided domain

registration as a service [309], we do not expect differences in behavior between the

21 supported malware families. Moreover, such a feature would go against our goal of

capturing general differences in behavior between benign and malicious domains. We

design the other features to represent distributions, for which the model can interpret

the differences, whereas the malware family feature can only serve to refine the model

for specific families. Finally, benign domains accidentally ‘belong’ to a certain malware

family, so the feature is irrelevant in terms of registration behavior. We already capture

relevant characteristics of the DGA in derived features such as the domain length that

capture randomness in generated domains and therefore the likelihood of collisions.

We want to evaluate our approach as if it were deployed at the time of the takedown,

so we do not use features for which we lack available historical data, as we would only

be able to obtain the current state, which for malicious domains is post-takedown.
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They include the features that require active probing or data collection such as the

website properties discussed earlier or the existence of search engine results for the

domain, which could serve as an additional indicator of popularity. However, if they

meet the applicable requirements and constraints, we can add such features in an actual

takedown as we can then collect accurate data.

7.5 Analysis of machine learning-based classification

To evaluate to what extent machine-learning based approaches can reduce the effort

of law enforcement to execute a takedown, we develop and evaluate a classifier that

decides whether future DGA domains are likely to be benign or malicious. The goals

of our analysis are threefold: we want to evaluate the raw performance of the classifier,

but also gain insights into its decision-making process to finally thoroughly assess the

benefits and limitations of automated approaches for domain classification. Moreover,

given that not all data sources are equally easy to collect, we assess their impact on

the correctness of our classification.

7.5.1 Experimental protocol

We first design an experimental protocol to determine the most appropriate machine

learning-based solution and evaluate it in a way that is accurate and representative of

real-world takedowns. Given the investigative setting and our intention to thoroughly

analyze the resulting model, we restrict our selection of machine learning algorithms

to those that are sufficiently interpretable. Moreover, as we systematically develop

high-level features that capture the full domain life cycle, we do not require automated

feature engineering. Therefore, we would not benefit from a deep learning approach and

only face drawbacks from its increased complexity, so we do not consider it further.

Before classifying benign and malicious domains, we discard domains that were

already sinkholed by security organizations to study botnet behavior. These organiza-

tions can sinkhole the domains either because they detect that botnet hosts are already

contacting the domain (whose validity period therefore starts before and extends be-

yond the takedown date), or because they generate the domains output by the DGA

upfront. The sinkholed domains can be considered neither a benign collision, as they

do not host real content and may even mimic the malware C&C server, nor a registra-
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Figure 7.2: Number of domains where certain data sets are available, after removing
sinkholed domains, for the 2017 and 2018 iterations. We separately mark the remainder
of domains where only the joint data set (comprising lexical, popularity-based, and
Certificate Transparency features) is available.

tion made with malicious intent, as they will not communicate with actual malware.

This means that they would confuse our model, and should be removed upfront by

preprocessing the data. We detect sinkholed domains by matching DNS and WHOIS

records with those of the sinkhole providers collected in SinkDB [371], by Alowaisheq

et al. [354], and by Stampar et al. [372, 373]. Table 7.2 summarizes the distribution of

domains across classes.

We execute our protocol with four machine learning algorithms: decision tree, gra-

dient boosted tree, random forest, and support vector machine. We split data sets

in a training and test set according to the considered iterations. When training and

testing on the same iteration, we split the ground truth according to a 10-fold cross

validation procedure. Otherwise, we construct the training and test sets from the sepa-

rate iteration ground truths as applicable. We perform all model training and analysis

using scikit-learn [374]. We elaborate on the different steps of this protocol in Ap-

pendix 7.9.

We run our experimental protocol for all domains of the 2017, 2018 and 2019 take-

down iterations. We only evaluate performance with the manually labeled ground truth
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that we obtained from law enforcement for the 2017 and 2018 iterations (Section 7.3.3).

In 2019, our model was used in the real-world classification effort, so a performance

evaluation would be biased since we contributed to the ground truth.

As we want to measure the performance of our approach as if it were deployed at

the time of the takedown operation, we use historical data that reflects the state of the

domains as of each takedown, i.e. November 30 of each year. Data for the malicious

domains collected after the takedown would refer to sinkholing and domain transfer

infrastructure, making it a signal for maliciousness that would heavily bias our classifier.

As shown in Figure 7.2, we cannot obtain all data sets for all domains: this is

because the third-party source could not collect relevant data (e.g. no WHOIS record

is available or the domain was never seen at passive DNS sensors). In order to still

generate a prediction for all domains, we develop an ensemble model. We train a model

for each combination of available feature sets, where a domain is included in the training

set if at least those data sets are available. To classify a domain, we use the output of

the model of the domain’s available data sets.

7.5.2 Results

Given that we are the first to analyze the specific issue of preemptively deciding whether

DGA domains are actually malicious or accidentally benign for a real-world takedown

(which brings about certain constraints), we are not able to compare our performance

results with previous work. Instead, we go beyond reporting basic metrics and critically

examine how its performance translates into a real-world reduction in effort, whether

our solution correctly captures differences between benign and malicious domains, and

how much it depends on the availability of different data sets.

7.5.2.0.1 Model performance Appendix 7.10 lists the relative performance of the

four machine learning algorithms that we evaluate: we conclude that a gradient boosted

tree classifier yields the best performance while still being sufficiently interpretable. We

therefore analyze only its results.

We first train a base ensemble model, varying the training and test sets over the 2017

and 2018 iterations. From the performance metrics in Table 7.5, we can see that concept

drift [375] occurs: performance drops when deploying our model across iterations instead

of within. This suggests that over time, patterns that distinguish benign and malicious
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Table 7.5: Performance metrics for the base ensemble model, varying the training and
test set over the 2017 and 2018 iterations.

Training
Test Accuracy F1 score Precision Recall

2017 2018 2017 2018 2017 2018 2017 2018
2017 93.4% 84.3% 92.6% 73.4% 92.6% 70.8% 92.7% 76.1%
2018 76.1% 96.3% 70.9% 93.5% 78.6% 92.7% 64.6% 94.3%

Table 7.6: Performance metrics for models trained on the 2017 and (for the extended
model) 15% of the 2018 iteration.

Ensemble model Accuracy F1 score Precision Recall FNR FPR Effort reduction
Base 84.3% 73.4% 70.8% 76.1% 23.9% 12.4% 100.0%

Extended a priori 86.4% 78.6% 70.5% 88.6% 2.3% 2.0% 100.0%
Base a posteriori 97.3% 95.3% 94.2% 96.5% 3.5% 2.4% 70.3%

Extended a priori + a posteriori 97.6% 95.8% 94.3% 97.4% 2.6% 2.3% 66.2%
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Figure 7.3: Performance metrics (mean and standard deviation) for the extended a
priori ensemble model, trained on the 2017 and a varying part of the 2018 ground
truth.

actors emerge or change, and these are therefore not captured by a model trained on

only a single iteration.

We therefore develop an extended ensemble model, where we combine ground truth

from a previous iteration with manual, a priori classifications of a subset of domains

in the target iteration. This enables us to improve model performance by capturing the

novel patterns in the new iteration, while still reducing manual effort overall.

We evaluate this extended model trained on all of the 2017 and part of the 2018

ground truth and tested on the remaining 2018 domains. Based on Figure 7.3, we

empirically set the proportion of the 2018 ground truth that is (randomly) selected

to be manually classified and added to the training set at 15%, as it represents the
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Figure 7.4: FNR and FPR as a function of the fraction of domains with a score below
a certain value. By choosing the maximum error rate, we determine the fraction of
domains that can be automatically classified.

best trade-off between improved performance and limited additional effort. We repeat

this random selection ten times and report average results. Table 7.6 shows that this

extended a priori ensemble model improves on the base model.

However, some misclassifications still occur in this extended a priori model. The

gradient boosted tree model outputs a score that reflects its confidence in its prediction.

We can leverage these scores to develop a directed semi-automated approach: uncertain

domains are manually investigated in more detail a posteriori. We examine how effective

this approach is in further improving performance while still reducing investigative

effort.

We explain this approach using the extended model for domains where all data sets

are available, which allows us to simplify and visually support our explanation, but

then apply it to the extended ensemble model. Figure 7.4 shows the false negative and

positive rates as a function of the fraction of domains with a score below a certain

value. By choosing a target maximum FNR and FPR, we can determine the lower and

upper bounds on the maliciousness score; these bounds are determined based on the

training set, so they do not necessarily reflect the exact actual error rates on the test set.

Domains with scores within these bounds have to be verified manually, while domains

with a lower and higher score are automatically classified as benign and malicious,

respectively.
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For the extended model on domains with all data sets available as represented in

Figure 7.4, when setting a 2% error tolerance, 55.5% of domains have a maliciousness

score below the lower bound set by 2% FPR (i.e. are benign), while (100%− 72.9%) =

27.1% of domains exceed the upper bound set by 2% FNR (i.e. are malicious). 55.5% +

27.1% = 82.6% of domains therefore no longer need to be manually inspected. Only

72.9%− 55.5% = 17.4% of domains still require further manual investigation.

When we apply this a posteriori approach to the extended ensemble model evaluated

on all domains from the 2017 and part of the 2018 iteration (by choosing appropriate

bounds for each component model), we obtain an accuracy of 97.6%; overall, the per-

formance metrics in Table 7.6 indicate a very high performance. The effective FNR and

FPR are 2.6% and 2.3%, comparable to the target error rate of 2%.

Overall, this approach reduces manual effort by 66.2%, accounting for the 15% of

domains manually classified a priori. When the error tolerance is 1% and 0.5%, the

fraction of automatically classified domains is 52.5% and 35.7% respectively. The score

thresholds become very strict when very low error tolerances must be maintained,

reducing the fraction of domains that can be automatically classified. The comparable

effort reduction for an ensemble model trained on the 2017 and 2018 and tested on the

2019 iteration and a 2% error tolerance amounts to 76.9%, again achieving a significant

reduction in manual effort.

7.5.2.0.2 Feature analysis By using gradient boosted trees, we can measure how

important individual features are to the overall performance. As we want to make an

accurate assessment for the full feature set, we calculate importance scores for the

extended model on domains where all data sets are available.

We show the ten most important features in Table 7.7 and find that they primarily

capture the age and activity period of a domain. When malware creators want to evade

our classifier, they would primarily want to influence these features. Figure 7.5 shows

how the distributions of values for the most impactful feature (time between WHOIS

creation and expiration date) are clearly distinct for benign and malicious domains.

Misclassified benign domains (false positives) actually show a ‘malicious’ character, i.e.

they are young; the malicious domains in our test set (from 2018) are never old, so

other (but less expressive) features impact whether they are classified correctly.

Consistent with our second insight from Section 7.4.2, time-based features are costly
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Table 7.7: Importance scores of the top 10 features in the full feature set for the extended
a priori ensemble model.

# Set Feature Score
14 WHOIS Time between WHOIS creation and expiration date 0.230
13 WHOIS Time between WHOIS creation and takedown date 0.219
21 Passive DNS Time between first passive DNS query and takedown 0.057
20 Passive DNS Time between first and last seen passive DNS query 0.049
11 WHOIS Time between WHOIS creation date and AGD validity 0.041
15 WHOIS Renewal of domain seen in WHOIS data (Unknown) 0.040
34 Active DNS Days DNS record was seen for resource record MX 0.040
15 WHOIS Renewal of domain seen in WHOIS data (False) 0.037
31 Active DNS Time between first seen DNS record and AGD validity 0.029
3 Popularity Number of pages found in Wayback Machine 0.028
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Figure 7.5: Cumulative distribution function of the values of benign, malicious, false
positive, and false negative domains for the time between WHOIS creation and expi-
ration date.

and difficult to evade: attackers have to register a domain name for a longer period of

time, which translates into a higher monetary cost, and register it earlier, which is

hard to achieve retroactively. In an extreme case, the domain name would have to be

registered before the malware family becomes active.

7.5.2.0.3 Data set comparison We assess the impact of the availability of each

data source on our performance starting from the extended a priori ensemble model,

after which we retrain models with one feature set omitted each time. We join lexical,

popularity-based, and Certificate Transparency features into a joint feature set, as they

are the easiest to acquire and are always available, which leaves us with four feature

sets: joint, WHOIS, passive DNS, and active DNS.

Figure 7.6 illustrates the performance of the models where one data set is discarded.
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Figure 7.6: Performance metrics (mean and standard deviation, in percent) of extended
a priori ensemble models where one data set is omitted.

Table 7.8: Average covariance between features of one set, for the domains from the
2017 and 2018 iterations.

Joint Passive
DNS

WHOIS Active
DNS

Joint
Passive DNS

WHOIS
Active DNS

0.22 0.048 0.079 0.097
0.048 0.13 0.05 0.11
0.079 0.05 0.26 0.11
0.097 0.11 0.11 0.43 0.06

0.09
0.12
0.15
0.18

We observe that missing WHOIS data has the most severe impact, significantly harm-

ing performance. Discarding the joint data set may actually improve performance, as

its non-time-based features may lack sufficiently distinctive patterns, but it remains

necessary for domains that lack any other data set (but these are likely candidates for

manual verification).

Missing passive or active DNS data has a less pronounced effect. We find some

degree of redundancy between passive and active DNS data, as their time-based features

in particular represent similar concepts and are therefore intuitively dependent. We

confirm this effect with the covariance between feature sets shown in Table 7.8: passive

and active DNS data are relatively highly correlated with each other.

This effect means that passive and active DNS (as well as WHOIS) data all capture

important and hard-to-evade time-based patterns, but that one missing data set can

be substituted by the others without a significant loss in performance. This becomes

important when considering that data sets such as WHOIS that lead to better perfor-

mance may come with a significant cost to acquire. In Section 7.6.2, we elaborate on

the implications of our findings on future takedown operations.
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7.5.2.0.4 Conclusion We find that an approach combining primarily automated

classification and targeted manual investigation across multiple iterations achieves the

best compromise of high accuracy and low manual effort, with less than 3% mistakes.

This reduces investigative effort by up to 76.9%, depending on the tolerated error rate,

freeing up time to focus on those domains that are the hardest to classify.

Our analysis of features and data sets shows that time-based features are the most

important ones, which at the same time increases the cost and difficulty of evading

our classifier. However, our performance depends on data sources with a high cost of

acquisition, in particular WHOIS data. We continue our discussion of these aspects in

the next section.

7.6 Discussion

In this section, we elaborate on the factors that may influence the applicability of our

approach to future takedowns. We first explain how a high cost and effort for attackers

complicates the evasion of our classifier and may therefore discourage malicious actors.

We then highlight how recent developments in the availability of data sets may have a

negative impact on the performance of our approach.

7.6.1 Evasion

Previous work [328, 340] pointed out that attackers may develop bypasses to mislead

a classifier like ours and therefore evade detection and subsequent takedown of their

malicious domains, especially as we cannot rely on detecting the malicious activity that

would be required for the correct functioning of the botnet. We discuss potential evasion

strategies and how difficult they are for malicious actors to deploy. This proactive

analysis allows for anticipating changes in attacker behavior, developing additional

features that are even harder to circumvent and implementing infrastructural measures

that complicate evasion.

Features that leverage the properties of the DGA itself, such as lexical features,

can be evaded by redesigning DGAs. While it is feasible to carefully engineer DGAs

to be more resilient against detection [361], such a DGA should generate domains that

appear very similar to benign domains (e.g., only short domains). This yields a higher

risk of collisions and fewer domains available for registration, endangering uninterrupted
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control of the botnet.

Popularity-based features require setting up a website for discovery by web crawlers,

and generating traffic, or at least the appearance thereof. Website popularity rankings

can easily be manipulated at scale [64], allowing attackers to insert their domains and

appear as benign. If malicious actors can have a presence within the networks where

passive DNS data is collected, they could also insert DNS traffic that makes the domain

appear regularly visited. Given that the attackers control their infected machines, the

botnet itself could be leveraged for this purpose. However, as the traffic of infected

machines can be monitored, these queries can be detected, revealing those domains

that the malicious actors have registered upfront. Finally, the presence of certain DNS

resource records can be forged by inserting fake records, but as some records require

values of a specific format, their validity could be verified, as maintaining valid records

requires more effort.

Given recent efforts to increase the ubiquity of TLS encryption by making free and

automated TLS certificates available [376], malicious actors can relatively easily obtain

them for malicious domains and therefore appear in Certificate Transparency logs.

However, such a process still requires additional effort that is not strictly necessary for

the correct operation of the C&C server. While the choice to obtain a paid certificate

indicates a willingness to invest in the domain (and therefore suggests benignness), the

use of a free certificate does not necessarily imply maliciousness.

Features that consider the age of a domain can be thwarted by registering malicious

domains (long) before they become valid. However, it requires prolonged registrations

and the corresponding payment of registration fees, which runs counter to minimizing

the cost of the malicious campaign. Moreover, the longer a domain with malicious

intent has been registered, whether active or dormant, the more susceptible it is to

being blacklisted/taken down or to the attackers being identified.

Acquiring and managing domains may incur a significant (manual) effort. If the

process is automated, certain registration patterns can emerge that make it easier to

identify the maliciously registered domains [329, 341]. Malicious actors might attempt

to compromise existing or reuse expired domains to exploit the (residual) trust in these

domains [358] (for example their age). However, it would require even more effort, as

they would need to find eligible domains, attempt to compromise them or monitor

their expiration status to take them over at the right time, and finally deploy the
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malicious operation. As domains are randomly generated by a DGA and often have a

short validity, the likelihood of success is low.

To circumvent features that use WHOIS registrant records, malicious actors could

insert forged yet realistically-looking data. However, if these records are automatically

generated, detection becomes feasible and accurate [329,341]. Manual effort in creating

fake records quickly becomes infeasible given the need to keep registering domains as

they become (in)valid.

In summary, while the publication of features allows for an attacker to develop tech-

niques to evade them, many of these would go against the goal of malware operators

to set up these domains with low effort and at low cost. Moreover, if the attacker be-

havior would significantly shift, other evasion countermeasures and detection strategies

remain available, although they might require increased effort and involvement by rele-

vant stakeholders. Finally, we find time-based features to be the most important ones:

they are particularly costly and hard to evade.

7.6.2 Availability of data sets

Our features come from different data sources that each present their own issues in

terms of acquisition, affecting not only law enforcement but also adversaries seeking to

evade the model. Moreover, our evaluation of the importance of different data sources

for correctly classifying domains shows that the data sets that contribute the most to

our model’s performance have a significant cost in terms of money and effort.

WHOIS data in particular provides the highest accuracy, but obtaining it may be

challenging. From a technical standpoint, WHOIS data is not machine-readable nor has

a standard format [377], so it requires (sometimes manual) parsing. Moreover, access

is rate limited [378].

Public availability of WHOIS data is also affected by privacy concerns [379] as

well as strict limitations on the collection and dissemination of personal data due to

privacy regulations. This triggered ICANN to adopt the “Temporary Specification for

gTLD Registration Data”, which allows generic TLD registries to redact personal data

in WHOIS records, while having the intent to provide vetted partners such as law

enforcement agencies with privileged access [178]. As a result of the European General

Data Protection Regulation, European country-code TLD registries have also started

to withhold personal data [380]. Security researchers have voiced concerns that the
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unavailability of such data to them could significantly hamper efforts to identify and

track malicious actors [381,382].

Passive DNS data collection may also have privacy implications [343], and requires

sufficient storage and processing resources. Active DNS data collection has similar stor-

age and resource needs, especially to ensure that records are updated sufficiently fre-

quently. The coverage of both data sets also depends on cooperation of third parties:

passive DNS requires access to recursive resolvers ideally deployed all over the world,

and active DNS collection often relies on zone files that must then be shared by reg-

istries. Although law enforcement may gain more extensive access, they may be more

limited in terms of resources, and delays in procedures to obtain data may hamper swift

action. Conversely, commercial providers that can deploy more extensive resources may

not be able to access more sensitive information. Finally, from a cost perspective, these

commercial providers may charge significant amounts, especially for historical data.

We see that our approach becomes less effective if certain data sets would be un-

available, and our discussion shows that comprehensive coverage of data sets comes

at great cost. However, we can still achieve reasonable performance even with missing

data, and we see that data sets are partially correlated. The continued availability of

these data sets is therefore important to counter future malicious operations, but not

to such an extent that their absence would be disrupting the effectiveness of takedowns.

7.7 Related work

Classifiers for detecting malicious domains: Numerous works have addressed the

problem of designing classifiers to distinguish benign from malicious web pages and

domains. Ma et al. [340] classified malicious URLs based on lexical and host-based

features, comparing multiple feature sets and classifiers. Felegyhazi et al. [327] designed

a classifier seeded with known malicious domains that uses DNS and WHOIS data.

Antonakakis et al. [322] proposed Notos, which outputs a reputation score based on the

determination of the reputation of domain clusters obtained from network properties,

DNS data, and the ground truth on benign and malicious domains. Bilge et al. [323,362]

proposed Exposure, which uses DNS-based and domain name features to detect domains

contacted by infected machines within passive DNS traffic. Frosch et al. [360] proposed

Predentifier, which combines passive DNS, WHOIS, and geolocation data to detect
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botnet command and control servers. Hao et al. [328] proposed PREDATOR, a classifier

for malicious domains based on features available at the time of registration and the

identification of batch registrations. Spooren et al. [329] developed Premadoma, a model

to detect malicious domains at the time of registration, leveraging features based on

infrastructural reputation and registrant similarity, and discussed the challenges and

tactics for deploying the model in an operational setting. Machlica et al. [383] created

a model that uses two levels of classifiers to improve detecting malicious domains using

lexical and traffic-based features. Kidmose et al. [384] and Zhauniarovich et al. [332]

surveyed approaches to detecting malicious domains from (enriched) DNS data.

Classifiers for detecting algorithmically generated domains: Earlier work in

detecting algorithmically generated domains (AGDs) identified clusters of likely candi-

dates. Yadav et al. [302,307] evaluated several statistical measures for classifying groups

of domains as algorithmically generated or not based on character distributions within

the domain names and the IP addresses to which they resolve. Yadav and Reddy [385]

applied similar statistical measures on successful and failed domain resolutions. An-

tonakakis et al. [303] proposed Pleiades, which clusters non-existent domains based on

character distributions within the domain names and on the querying hosts, using the

strategy on DNS traffic from large ISPs to discover six DGAs that were unknown at

that time. Krishnan et al. [386] detected hosts in a botnet by analyzing patterns in

DNS queries for non-existent AGDs through sequential hypothesis testing. Mowbray

et al. [387] detected hosts that query domains with an unusual length distribution,

deriving 19 DGAs of which nine were previously unknown.

Later work moved towards detecting AGDs per single domain name. Schiavone

et al. [336] proposed Phoenix, which uses linguistic features to detect potential AGDs,

afterwards using linguistic, IP-based and DNS-based features to cluster domains and ex-

tract properties of the DGAs that generated them. Abbink and Doerr [388] and Pereira

et al. [389] highlighted how most classifiers focus on detecting the randomness in AGDs

and are therefore not able to correctly classify dictionary-based DGAs, and proposed

new methods for detecting such DGAs. Multiple deep learning-based approaches have

since been proposed [304]. Spooren et al. [361] found one such deep learning model by

Woodbridge et al. [325] to outperform the human-engineered features of the model by

Schüppen et al. [324].

Takedowns of botnet infrastructures: Previous coordinated takedowns of botnet
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infrastructures have been studied to evaluate their effectiveness over time in preventing

further abuse. Nadji et al. [390] presented rza, a tool that uses a passive DNS database

to analyze and improve the effectiveness of botnet takedowns. They evaluated the tool

for three malware families and found mixed long-term impact of takedown operations.

Asghari et al. [391] analyzed the institutional factors that influenced the cleanup effort

of the Conficker worm, finding that cleanup was slow and that large-scale national

initiatives did not have a visible impact. Shirazi [392] surveyed and taxonomized 19

botnet takedown initiatives from 2008 to 2014. Plohmann et al. [300] analyzed the

structure of DGAs for 43 malware families and variants, and analyzed registrations of

their AGDs, finding domains missed in takedowns, families for which few domains were

sinkholed, and slowness in seizing AGDs registered by malicious actors. Alowaisheq

et al. [354] studied the life cycle of takedown operations across sinkholes and registrars

based on passive DNS and WHOIS data, finding several flaws that would allow malicious

actors to regain control of some sinkholed domains. Hutchings et al. [315] provided

insights into the effectiveness of takedown efforts by interviewing key actors, finding

that law enforcement faces more challenges than commercial enterprises in effectively

carrying out takedown operations.

7.8 Conclusion

Taking down the domains that compromised machines use to communicate with com-

mand and control servers is an effective measure to disrupt botnets such as Avalanche.

However, law enforcement must take care not to affect any legitimate domains that

happen to collide with algorithmically generated domains. For Avalanche, prosecutors

manually conducted this classification process, requiring large amounts of time and

effort as well as allowing for human error.

We therefore develop an automated approach for classifying benign and malicious

registered DGA domains, within the constraints of the real-world takedown context

that make previous approaches inapplicable: we cannot rely on bulk patterns, detecting

ongoing malware activity or actively connecting to domains. We propose a hybrid model

that balances automation with manual classification to achieve a higher performance

as well as vastly reduce investigator effort. We develop and evaluate our approach to

represent the Avalanche takedown most truthfully, such that our results and findings
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reflect the utility of automated domain classifiers in a real-world takedown scenario,

such as for our contribution to the 2019 iteration.

Given the increasing number and size of cybercrime operations, automated tools can

assist law enforcement investigators in avoiding any harmful impact of their operation,

especially on uninvolved legitimate parties. These tools will allow them to stay one step

ahead of malicious actors and impair their activities with the goal of shielding end users

from any harm.
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Appendix

7.9 Machine learning protocol

Machine learning algorithms are trained on a training set Tr and evaluated on a test

set Te. As explained in Section 7.5, if we need to train and test on the same iteration,

we split using a k-fold cross validation procedure: the data is split in k folds, with every

211



Chapter 7. A Practical Approach for Taking Down Avalanche Botnets Under
Real-World Constraints

fold being used once as the test set, while we use the k − 1 others for training, and

finally, we average results over k experiments. We set k to 10. The advantage of using

cross validation is that we can reduce bias in the composition of the selected training

and test set, even with a relatively small data set.

Most ML algorithms have different hyperparameters to tune. Tuning on the test

set would lead to highly biased results. Therefore, we have to split the training set Tr

into a set for training Tr′ and another one for validation V . We again use a 10-fold

cross validation procedure. We treat and calculate the upper and lower bounds for the

extended a posteriori model as hyperparameters.

We evaluate the following performance metrics over the test set:

accuracy = tp+ tn

tp+ tn+ fp+ fn
(7.1)

precision = tp

tp+ fp
(7.2)

recall = tp

tp+ fn
(7.3)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(7.4)

where tp, tn, fp, fn stand for the number of true positives, true negatives, false positives

and false negatives, respectively. Malicious domains are considered positive, benign

domains are negative. Precision represents the fraction of samples identified as malicious

that are actually malicious, while recall represents the fraction of malicious samples that

were correctly identified. The F1 score summarizes these two metrics, and is a superior

metric compared to accuracy when dealing with unbalanced datasets, therefore we

optimize for it.

Due to incompleteness of our data sets (e.g., WHOIS records not containing a

parseable phone number), certain domains have missing feature values. We impute

them (i.e., substituted them with plausible values to avoid bias) as follows (the feature

numbers correspond to those defined in Section 7.4.3):

• No Wayback Machine data: feature values (3-5) are set to zero as no data means

that the Wayback Machine has not found any page on the domain, suggesting un-
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popularity.

• No WHOIS timestamps: feature values (11-14) are set to the mean, as no data

implies that data could not be parsed or retrieved, not that the data does not exist

(e.g., all domains have a registration date). By using the mean, we do not attach

any statistical meaning to the absence of data and do not skew the distribution.

• Less than two WHOIS records: the renewal feature (15) gets a third value that indi-

cates that only one historical WHOIS record was available (preventing a comparison

of expiration dates).

• No WHOIS registrant records: features that rely on an address, an email address,

or a phone number (16-18) get a third value that indicates that we do not have a

value for the corresponding field.

• No passive or active DNS data: continuous feature values (19-22, 30-36) are set to

zero and binary feature values (23-29) to false as no data means that DNS records

for the domain were never queried, suggesting unpopularity.

7.10 Evaluation of machine learning algorithms

Table 7.9 presents the performance metrics of the machine learning algorithms that we

evaluate in Section 7.5.2, for a base ensemble model trained and tested on the initial

2017 iteration. The results show that gradient boosted trees consistently outperform

the other ML algorithms.

Table 7.9: Performance metrics of the evaluated machine learning algorithms.

Metric Decision Tree Gradient Boosted Tree Random Forest Support Vector Machine
Accuracy 88.6% 93.4% 92.8% 86.4%
Recall 86.6% 92.7% 92.6% 77.9%
Precision 87.8% 92.6% 91.5% 90.6%
F1 score 87.2% 92.6% 92.0% 83.8%
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Chapter 8

Conclusions

This dissertation focuses on improving global DNS security using traffic measurement

and data analysis approaches. We have presented six selected contributions. The first

three DNS measurement studies shed light on significant weaknesses inherent in the

design of Internet protocols that can affect the correct operations of DNS infrastruc-

tures and domain names. In the subsequent three studies, we have presented statistical

and machine learning approaches to support the community with inferential analy-

sis and practical tools to combat domain name abuse more effectively. The presented

contributions are highly empirical in nature. We actively engaged with the industry

(practitioners and regulators) to raise awareness of the DNS-related cybersecurity is-

sues we studied and, whenever possible, made proposed solutions available.

We have presented the first measurement study into the vulnerability of non-secure

DNS dynamic updates, which enables an attack we referred to as zone poisoning. Ini-

tially, we have measured prevalence rates for a random sample of 2.9 million domains

and for the Alexa top 1 million domains and found that the vulnerability poses a se-

rious security flaw that deserves more attention from domain owners and DNS service

operators. At the time of writing, we have extended our measurements to the global

domain name population and have discovered approximately 400,000 domain names

vulnerable to zone poisoning. Thanks to our repeated and sustained outreach cam-

paigns to the affected parties (i.a., via notifications to national CERTs), more than

99% of misconfigured domain names were secured.

Next, we have presented a novel method to infer the deployment of inbound SAV

for the IPv4 and IPv6 address spaces and performed the first global study of the prob-

lem. We measured the filtering policies of 52% of routable IPv4 autonomous systems
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(26% for IPv6) and 28% of all the IPv4 BGP prefixes (almost 9% for IPv6). We have

shown that most of the networks for which we obtained measurements are consistently

or partially vulnerable to inbound spoofing. Note that the absence of inbound SAV

makes closed DNS resolvers exposed to several types of DNS-based attacks, including

zone poisoning and cache poisoning attacks, NXNSAttack, or potentially zero-day vul-

nerabilities in the DNS server software. To draw attention to the problem of inbound

spoofing, we launched the Closed Resolver Project at https://closedresolver.com in

collaboration with RIPE NCC and national CERTs. The ultimate goal is to run notifi-

cation campaigns for network operators and provide them with an accessible platform

to investigate and mitigate the vulnerability in their networks.

We also evaluated the adoption rates of the SPF and DMARC email security exten-

sions for the global domain name population, and in particular high profile domains.

We analyzed the potential for domain name spoofing posed by the absence of their

rules or misconfiguration. The results show that a large part of the domains do not cor-

rectly configure the SPF and DMARC rules, which enables attackers to deliver forged

emails to user inboxes successfully. For remediation, we have sent emails to notify the

CSIRTs responsible for almost 6,5 million domains. As many as 23.2% of high-profile

domains were re-configured at the end of our notification campaign. Our experience

shows that disclosing vulnerabilities through CSIRTs can be effective, especially for

valuable domain names.

We have presented the first comprehensive study comparing the rates of malicious

and abusive behavior in the legacy gTLDs (e.g., .com, .net, .biz) the new gTLDs

(e.g., .top, .paris, .xyz) introduced by ICANN as of 2012. While the number of

abused domains in legacy gTLDs seems to stay relatively constant over time (or in

some cases decreasing), new gTLDs that underwent rigorous application and evaluation

process by ICANN are more frequently affected by phishing, malware, and especially

spam activities. Investigating the relationship between structural and security-related

properties of new gTLD operators and abuse counts revealed systematic and anecdotal

evidence that low domain registration prices, unrestrictive registration practices, and

the increased availability of domains decrease barriers to abuse and seem to make some

new gTLDs very attractive for miscreants. Taken together, our findings indicate that

the existing safeguards did not prevent domain name abuse. Therefore, we have further

developed cases for modifying the existing safeguards and proposed new ones, which
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we extensively discussed with the ICANN community and the more recently with the

European Commission.

One limitation of our inferential analysis, explained above, was the use of a simple

approach to distinguish maliciously registered domains from compromised sites. There-

fore, we proposed to develop the COMAR system for this purpose. It uses publicly

available datasets and makes classification decisions based on 38 extracted features.

Registries, registrars, and hosting providers can use it to decide on appropriate reme-

diation actions for each domain containing malicious content. It can also serve as an

effective tool for blacklisting domains from existing URL lists. We plan to deploy CO-

MAR at two European registry operators and create an early notification system to

contact owners of compromised domains and domain registrars for maliciously regis-

tered domains. The results of this project were used in multiple discussions with the

European Commission and the ICANN community on the definition of DNS abuse. As

part of future work, we intend to systematically distill the set of registration charac-

teristics preferred by attackers and analyze individual campaigns and long-term trends

in domain name abuse.

Finally, we developed an automated approach for classifying maliciously registered

DGA domains and legitimate domains that happen to collide with algorithmically gen-

erated domains. We took into account the constraints of the real-world takedown con-

text that make previous approaches inapplicable: we cannot rely on bulk patterns,

detecting ongoing malware activity or actively connecting to domains. We have pro-

posed a hybrid model that balances automation with manual classification to achieve

a higher performance as well as vastly reduce investigator effort. We have developed

and evaluated our approach to represent the Avalanche takedown most truthfully, such

that our results and findings reflect the utility of automated domain classifiers in a

real-world takedown scenario, such as for our contribution to the 2019 iteration.
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[59] C. Gañán, “Whois sunset? a primer in registration data access protocol (rdap)

performance,” in Network Traffic Measurement and Analysis Conference, 2021.

[60] “Temporary Specification for gTLD Registration Data,” https://www.icann.org/

resources/pages/gtld-registration-data-specs-en.

[61] “Advisory Statement: Temporary Specification for gTLD Registration Data,”

https : / / www.icann.org / en / system / files / files / advisory - statement - gtld -

registration-data-specs-17may18-en.pdf.

[62] “SSAC Advisory on Registrar Impersonation Phishing Attacks ,” https://

www.icann.org/en/system/files/files/sac-028-en.pdf, 2008.

[63] Q. Scheitle, O. Hohlfeld, J. Gamba, J. Jelten, T. Zimmermann, S. D. Strowes,

and N. Vallina-Rodriguez, “A Long Way to the Top: Significance, Structure, and

Stability of Internet Top Lists,” in 2018 Internet Measurement Conference, ser.

IMC ’18, 2018, pp. 478–493.

224

https://www.icann.org/rdap 
https://www.icann.org/rdap 
https://www.icann.org/resources/pages/gtld-registration-data-specs-en
https://www.icann.org/resources/pages/gtld-registration-data-specs-en
https://www.icann.org/en/system/files/files/advisory-statement-gtld-registration-data-specs-17may18-en.pdf
https://www.icann.org/en/system/files/files/advisory-statement-gtld-registration-data-specs-17may18-en.pdf
https://www.icann.org/en/system/files/files/sac-028-en.pdf
https://www.icann.org/en/system/files/files/sac-028-en.pdf


Bibliography

[64] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and

W. Joosen, “Tranco: a research-oriented top sites ranking hardened against ma-

nipulation,” in Proc. of the 26th Annual Network and Distributed System Security

Symposium. Internet Society, 2019.

[65] D. Kaminsky, “It’s The End Of The Cache As We Know It,” In: Black Hat

Conference, http://www.slideshare.net/dakami/dmk-bo2-k8, August 2008.

[66] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz, “Going Wild:

Large-Scale Classification of Open DNS Resolvers,” in Proc. of ACM IMC, 2015,

pp. 355–368.

[67] D. Dagon, N. Provos, C. P. Lee, and W. Lee, “Corrupted DNS Resolution Paths:

The Rise of a Malicious Resolution Authority,” in Proc. of NDSS, 2008.

[68] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic Updates in the

Domain Name System (DNS UPDATE),” Internet RFC 2136, April 1997.

[69] N. Biasini and J. Esler, “Threat Spotlight: Angler Lurking in the Domain Shad-

ows,” http://blogs.cisco.com, March 2015.

[70] C. Arthur, “Twitter and New York Times Still Patchy as Registrar Admits SEA

Hack,” https://www.theguardian.com, 2013.

[71] R. Droms, “Dynamic Host Configuration Protocol,” Internet RFC 2131, March

1997.

[72] D. Eastlake 3rd, “Secure Domain Name System Dynamic Update,” Internet RFC

2137, April 1997.

[73] B. Wellington, “Secure Domain Name System (DNS) Dynamic Update,” Internet

RFC 3007, November 2000.

[74] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington, “Secret Key

Transaction Authentication for DNS (TSIG),” Internet RFC 2845, May 2000.

[75] Internet Systems Consortium, Inc., “BIND – The Most Widely Used Name Server

Software,” https://www.isc.org/downloads/bind, November 2015.

[76] Internet Systems Consortium, Inc., “History of BIND,” https://www.isc.org/

history-of-bind, January 2015.

225

http://www.slideshare.net/ dakami/dmk-bo2-k8
http://blogs.cisco.com
https://www.theguardian.com
https://www.isc.org/downloads/bind
https://www.isc.org/history-of-bind
https://www.isc.org/history-of-bind


Bibliography
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