
RESEARCH Open Access

Anomaly detection through information
sharing under different topologies
Lazaros K. Gallos1,2, Maciej Korczyński3 and Nina H. Fefferman2,4,5*

Abstract

Early detection of traffic anomalies in networks increases the probability of effective intervention/mitigation actions,
thereby improving the stability of system function. Centralized methods of anomaly detection are subject to
inherent constraints: (1) they create a communication burden on the system, (2) they impose a delay in detection
while information is being gathered, and (3) they require some trust and/or sharing of traffic information patterns.
On the other hand, truly parallel, distributed methods are fast and private but can observe only local information.
These methods can easily fail to see the “big picture” as they focus on only one thread in a tapestry.
A recently proposed algorithm, Distributed Intrusion/Anomaly Monitoring for Nonparametric Detection (DIAMoND),
addressed these problems by using parallel surveillance that included dynamic detection thresholds. These
thresholds were functions of nonparametric information shared among network neighbors. Here, we explore the
influence of network topology and patterns in normal traffic flow on the performance of the DIAMoND algorithm.
We contrast performance to a truly parallel, independent surveillance system. We show that incorporation of
nonparametric data improves anomaly detection capabilities in most cases, without incurring the practical
problems of fully parallel network surveillance.

Keywords: Anomaly detection, DDoS attack, Information sharing, Simulation

1 Introduction
The ability to detect anomalous behaviors, especially
malicious attacks, in a network is critical for the safety
of most technological systems. There are many different
methods that can enhance cyber security. Typical
protection strategies include the use of, e.g., firewalls or
network intrusion detection systems (NIDS) [1]. An
alternative approach is to attempt detecting attacks
through information sharing among the nodes of such a
network [2–6]. These algorithms take advantage of the
fact that most cyber-attacks engage the majority of
nodes in a network, so that accumulating information
from other nodes can enhance the accuracy of attack
detection at the local level.
For example, a widespread attack strategy in computer

networks is the distributed denial of service (DDoS)
attack. A large number of nodes become victims of the

attacker and start emitting packets towards a given
target node or a set of nodes, thus generating a lot of
traffic, which necessarily influences the majority of the
network [7]. If a single node can analyze traffic informa-
tion from a wider area of the network, then it will have a
greater probability of understanding whether a distrib-
uted attack is taking place or not. Of course, this kind of
expansive surveillance can be difficult due to not only
the time it takes to monitor and analyze data from large
segments of the network but also in terms of negotiating
access to data on traffic across other domains in the
first place [8].
Based on this principle, we recently introduced [9] a

local method where a node decides if it is under attack by
combining its own local observations with information on
its neighbors’ “level of concern,” a non-parametric indica-
tor that can be shared quickly and efficiently, with little
chance of violating privacy concerns. We demonstrated
how this method, called DIAMoND (Distributed Intru-
sion/Anomaly Monitoring for Nonparametric Detection),
can lead to improvement of a node’s detection capabilities.
We tested the method by implementing it in a software

* Correspondence: nina.h.fefferman@gmail.com
2Department of Ecology, Evolution, and Natural Resources, Rutgers
University, New Brunswick, NJ, USA
4Department of Ecology and Evolutionary Biology, University of Tennessee,
Knoxville, TN, USA
Full list of author information is available at the end of the article

EURASIP Journal on
Information Security

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5
DOI 10.1186/s13635-017-0056-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-017-0056-5&domain=pdf
mailto:nina.h.fefferman@gmail.com
http://creativecommons.org/licenses/by/4.0/

environment. The improvement of DIAMoND over
isolated detection without information sharing was of the
order of up to 20% in terms of sensitivity. However, this
initial study focused only on a limited set of simplified
network topologies. Since the flow of traffic is greatly
influenced by topological structure of the networks itself,
a critical next step is the investigation of how this method
will perform under more realistic topological structures.
Here, we present a systematic simulation study of how

DIAMoND behaves under controlled conditions, and we
determine the influence of the algorithm parameters to
improving attack detection. We stay close to the spirit of
the algorithm as presented in [9, 10], but we simplify the
most technical parts which are related, for example, with
the nature of the packets transferred. To explore whether
there are particular types of network topologies that
enhance or inhibit DIAMoND’s anomaly detection cap-
abilities, we generate different model topologies that mod-
ify the connection patterns between nodes. We also study
the DIAMoND algorithm on a real Internet topology,
using a known configuration of AS-level connected routes
[11]. We assume that a given percentage of the nodes are
compromised and take part in the attack. Each node then
uses the local detection algorithm, based on the traffic it
observes and the concern level of its neighbors, in order
to determine if it is under attack or not. We also explore
the performance of DIAMoND across network topologies
under different conditions of “normal” network traffic to
determine how the interactions between underlying top-
ology and expected variation in packet distribution and
flow might alter detection capabilities.

2 Methods
2.1 Network topologies
In our simulations, we use six different model network top-
ologies: (a) a two-dimensional square lattice, where nodes
occupy the vertices of a lattice; (b) an Erdos-Renyi network
[12], where nodes are connected randomly to <k> = 3 other
nodes; (c) a scale-free network [13] created with the config-
uration model [14], where the degree distribution follows a
power law with degree exponent γ = 3.5; (d) a scale-free
network with degree exponent γ = 2.5, where by definition
the hubs are much stronger, i.e., they connect to a larger
number of nodes; (e) the CAIDA Autonomous System
graph for May 2004 [11]; and (f) the CAIDA Autonomous
System graph for May 2007 [11].

2.2 Internet traffic
Using each one of the above network topologies, we
simulate traffic processes through the network. We
assume that the network represents the structure of, e.g.,
a computer network, so that traffic is made up by
packets transferred via the network links. The total
count of packets on a node is determined by the sum of

the “regular” traffic counts and the DDoS packets that
pass through the node.
In the absence of DDoS attack, we assume that the

“regular” traffic gi(t) in a node i over time follows a given
distribution. The assumption is that each node had been
monitoring the traffic that it handles under normal
conditions. In our simulations, this distribution has the
same functional form for all nodes in a given realization.
However, since different amounts of traffic go through
each node, every node uses different values for the
distribution parameters (and these do not change over
time). The simulation proceeds at discrete time steps. At
each time step, we choose a random number from the
given distribution for a node, according to this node’s
stored parameters. This random number includes all the
regular (non-attack) traffic that goes through this node
at the given time step, and we do not explicitly follow
the path of individual normal traffic packets. Therefore,
normal traffic is uncorrelated even between neighboring
nodes. We use three different forms of normal traffic
distributions, which correspond to different scenarios:
(a) Gaussian, (b) uniform, and (c) exponential.

2.2.1 Gaussian
In this case, the regular traffic in a node is normally
distributed. The expected value of traffic (in arbitrary
units) in each node is constant with time and uniformly
distributed in the range μ:[750:1250]. The standard
deviation for each node is also constant with time and is
uniformly distributed in σ:[25:100]. So, at time step t,
the traffic gi(t) on each node i is selected from a
Gaussian distribution (μi,σi).

2.2.2 Uniform
The expected traffic value for a node is chosen
uniformly in the range μ:[750:1250]. The width of the
distribution is a random number in the range σ:[25:100].
This means that at time step t the traffic gi(t) on a node
is uniformly selected in the range [μi–σI, μi + σi].

2.2.3 Exponential
In this case, a random number is drawn from an expo-
nential distribution λexp(−λr) with parameter λ = 1/β,
where β is chosen uniformly in the range β:[750:1250].

2.3 DDoS attack
During a DDoS attack, we select a percentage of the
network nodes. We vary this percentage in the range
from 5 to 60% of the total network. These nodes are
considered compromised, and they take part in a coordi-
nated attack. A random node is chosen in the network,
and it serves as the target of the attack. All the compro-
mised nodes emit a packet at each time step directed
towards this target node. The size of this packet can vary

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 2 of 10

between z = 1 and z = 200 (in the same arbitrary units as
used in the normal traffic distributions).
The routing of packets in the Internet is a complicated

process that involves many protocols and a number of
decisions based on the current state of the network.
Here, we necessarily simplify this process. At each time
step, a packet moves to a neighbor node via a routing
protocol, which is based on a biased random walk [15]:
with probability 70%, the packet follows the shortest
path from its current location towards the target node
and with probability 30%, it uniformly selects a random
neighbor of its current location. This protocol guaran-
tees that the target node will be reached within a finite
and small number of steps, while at the same time a
random path is selected in lieu of always using the short-
est path. Every node that receives one or more of these
packets at a given time step adds their total value to its
regular traffic, i.e., the total traffic wi(t) in the node is
now wi(t) = gi(t) + ntz, where nt is the number of packets
on the node at time t. When the target node receives the
DDoS packets, its traffic increases accordingly for that
step, but at the next step these packets are discarded
rather than forwarded to any other nodes.
Whenever, at a given time, one or more of the DDoS

packets are located on a given node, this node is consid-
ered to be under attack, i.e., it is classified as a positive hit.
Nodes with no DDoS packets are classified as negative.

2.4 The detection algorithm
The key idea behind the algorithm is that a node tries to
infer the existence of attacks by combining information
on its own traffic and on the perceived state of its neigh-
bors, without knowing if its neighbors are under attack or
not and without being able to analyze any direct informa-
tion about the patterns in traffic its neighbors experience.
Each node uses two sensitivity thresholds to characterize

its current traffic. The lower sensitivity threshold siL corre-
sponds to the point where normal traffic wi is P(wi > siL) =
6.681% of the time and the upper sensitivity threshold sit,
which initially is defined by P(wi > si0) = 0.135%. Of course,
the values for these parameters can be varied to tune the
method to different sensitivity. For the Gaussian dis-
tribution, these points correspond to siL = μi + 1.5σi and si0
= μi + 3σi. Every node perceives its current state as either
“normal”, “concerned”, or “attacked”, according to how its
current traffic count compares with these two thresholds
(Fig. 1). When traffic is higher than sit, then the node state
is “attacked”. When traffic is lower than sit but still
exceeds the lower threshold, i.e., sit >wi(t) > siL, then the
state of the node switches to concerned and it becomes
normal when wi(t) < siL. The upper threshold, which is
used to determine whether the node considers itself under
attack, is dynamic. Whenever the traffic exceeds the upper
threshold, then this threshold automatically lowers to 98%

of its current value but always remains higher than the
lower threshold siL. This is a necessary safety measure,
because if the lower threshold remains unbound, then an
attacker could decrease the adaptive threshold indefinitely
and artificially induce very low specificity (almost all traffic
would be classified as attack). When the node detects that
it is no longer under attack, it increases the value of sit to
102% of its current value, but this always remains lower or
equal to its initial value si0.
A node monitors its state according to two main indi-

cators, its threat level and its concern level. Additionally,
a node has a “feeling” for the concern of its neighbors,
i.e., the nodes directly physically or logically connected
in the network structure, without explicitly knowing
their threat level. As a result, every node keeps a set of
three parameters, which helps it evaluate the state of the
network and its own state. The three parameters are (a)
the concern level of the node ci(t), (b) the average concern
level of its neighbors expressed through the function Li(t),
and (c) the observed threat level Ti(t), based on internal
analysis of its own traffic. All three parameters take values
in {0, 1, 2} and are updated at every time step.
The threat level of a node is determined by the local

anomaly detection algorithm. As mentioned above, here,
we use the simplest case where the level of traffic wi(t) is
directly compared to the two sensitivity thresholds and ex-
clusively depends on their value. If wi(t) < siL then Ti(t) = 0;
if siL <wi(t) < sit, then Ti(t) = 1; and if wi(t) > sit then Ti(t) = 2.
The function Li(t) provides a characterization of the

average concern level <ci> = Σ_j cj(t−1)/ki, computed
over all the ki neighbors j of node i at time t−1. A low
concern level in the range <ci> < 0.4 leads to Li(t) = 0;
we set Li(t) = 1 when 0.4 < <ci> < 1.3; and Li(t) = 2
when 1.3 < <ci>.

Fig. 1 Demonstration of dynamic thresholds and the perceived
attack state by a node. The red line represents the traffic count
through the node, as a function of time. The lower threshold sL is
fixed, but the upper threshold st decreases when traffic exceeds its
value, and it increases when traffic is lower than that. In each of the
three areas defined by the two thresholds, the perceived threat level
of the node assumes the value of either T = 0, T = 1, or T = 2

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 3 of 10

The concern level of the node is updated according to
the values of Ti(t−1) and Li(t−1). At any given step, the
concern level ci(t) is equal to the threat level Ti(t−1) at
the previous time step, except when Ti(t−1) < 2 and the
neighborhood concern is Li(t−1) = 2, in which case it
becomes ci(t) = Ti(t−1) + 1.

2.5 Independent detection
In order to quantify possible benefits of employing
the DIAMoND algorithm, we compare the results to
a similar algorithm, with the difference that we now
remove all the information exchange among the
nodes. In this scheme, a node detects if it is under
attack by simply comparing its current traffic with a
given value of si0, which remains fixed for the entire
realization. Simply put, this represents a typical rate
limiting algorithm, such as in Refs. [16–18]. If wi(t) > si0,
then the node decides that it is “attacked”; otherwise,
it is in a normal state. The key difference is that the
value of the upper threshold in DIAMoND changes
according to the current attack state of the node and
information from its neighbors, while in independent
detection this threshold remains unchanged. In this way,
we can evaluate the importance of a moving threshold
and whether the involved calculation presents visible
improvement over the simpler implementation without
node communication.
The main parameter involved in the parallel algo-

rithm is the value of the threshold, used to determine
the attack state. Obviously, a very low threshold
would lead a node to decide that it is constantly
under attack, while a very high threshold would not
be sensitive to the attacks, in other words, trading
sensitivity for specificity. In order to compare the re-
sults of the parallel algorithm with DIAMoND, we

studied two separate cases, where this threshold as-
sumes either the low threshold value of DIAMoND,
siL, or the upper value, si0.

2.6 Simulation details
The network size for the model systems is 10,000 nodes.
The May 2004 CAIDA network has 17,160 nodes, and
the May 2007 CAIDA network has 24,942 nodes. The
network operates for 100 steps under normal conditions,
without any attack in the system, when the traffic in all
nodes is always wi(t) = gi(t). At time t = 100, a percentage
of nodes are compromised and emit one packet each at
every time step until t = 300.
The predefined attack period reflects typical duration

of amplification DDoS attack. As the majority of them
stem from booter services [19, 20], they are usually
shorter than 300 s [21]. After that, the network returns
to regular traffic, and the attacker nodes stop adding
new packets in the system. The DDoS packets that
remain in the system continue to be transferred until
they reach the target node, even if this takes place for
t > 300. We follow the network operation for another
100 steps, i.e., until t = 400.
As an example, we present in Fig. 2 the traffic in

the target node during such an attack. The target
node obviously receives all the DDoS packets, and its
traffic increases significantly during the attack period
and for a few steps after it stops. In contrast, a ran-
dom node in the network may not feel the attack, if
the attack packets that pass through this node are
not enough to raise its traffic to alarm levels. Inter-
estingly, it takes a few steps after the beginning of
the attack for the traffic to reach its maximum value,
and the increased traffic effect remains for a few
steps after the attack has ended.

Fig. 2 Time evolution of traffic on the target node (left), on a node neighboring the target node (middle), and on a random network node (right).
The DDoS attack took place in the range 100 < t < 300 on the CAIDA network structure of May 2004. The DDoS attack is performed by 5% of the
network nodes, and the DDoS packet size is z = 1. The blue symbols indicate the normal traffic through the node, the red symbols represent node
traffic due to the malicious packets, and the continuous line is the total traffic seen by the node. It is clear that the target node sees an increased
traffic during the attack, while traffic on the random node is not influenced significantly. There are very few nodes with intermediate traffic, and
they are all in close proximity to the target node

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 4 of 10

2.7 Evaluation of the results
We use the standard measures of accuracy, sensitivity,
specificity, and precision, which are defined as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

Precision ¼ TP
TPþ FP

where TP = true positive, TN = true negative, FP = false
positive, and FN = false negative.
In previous work [16], the intensity of an attack

was determined in practical terms through the num-
ber of unsuccessful TCP connections per source or
per destination. In this study, we instead present our
results as a function of the two main parameters that
determine the attack “intensity”, (a) the fraction of
compromised nodes p and (b) the packet size z. The
value of p indicates what percentage of the network
participates in the attack, while the packet size z
shows how “intense” is the attack from each node.
For example, if the product pz is constant, then it is
possible that we have many nodes that emit a small
number of packets or that we have a few nodes that
emit a large number of packets.
We calculate each of the four main indicators, e.g.,

accuracy, for the parallel (1st column) and the DIA-
MoND (2nd column) algorithms, averaged over the
attack stage (120 < t < 300). In the plots below, we assign
a color that corresponds to the indicator and ranges
from blue (50%) to red (100%). When a value is lower

than 50%, the algorithm fails completely, and we indicate
this with black.
The improvement or loss in each indicator when we

use DIAMoND versus the parallel algorithm is shown in
the 3rd column of each plot. In these plots, we show the
relative increase as:

Gain ¼ A DIAMoNDð Þ−A Parallelð Þ
A Parallelð Þ ;

where A can represent accuracy, sensitivity, specifi-
city, or precision. Yellow colors in these plots indi-
cate that DIAMoND outperforms the parallel version
(and red that it significantly outperforms it), while
the parallel version performs better when the color
is blue. The areas where both algorithms yield
comparable results, i.e., within 2% of each other, and
there is no clear improvement of using one over the
other, are shown in gray.

3 Results and discussion
3.1 Gaussian-distributed traffic
In our first simulation, we use a Gaussian distribution for
the normal traffic on each node. The results in Fig. 3 indi-
cate that both DIAMoND and the parallel algorithm can
in general detect the attack successfully, independently of
the underlying topology. On average, the accuracy in
square lattices is higher than 90%, and in all other topolo-
gies, it is around 80%. These values depend on the inten-
sity of the attack, i.e., the packet size, z, and the fraction of
compromised nodes, p. It is worth noting that these two
parameters do not have the same effect on the results.
The detection algorithms are more efficient when a small
number of nodes use large packet sizes, compared to
when more nodes use smaller packets.

Fig. 3 Values of accuracy, sensitivity, specificity, and precision for Gaussian distributed traffic. For each index, the first column shows the results
for the parallel algorithm, the second column shows the results for DIAMoND, and the third column displays the relative gain of the DIAMoND
algorithm over the parallel algorithm. We use the upper threshold, si0, as the threshold for the parallel algorithm

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 5 of 10

In terms of accuracy, we here find that the DIAMoND
algorithm significantly outperforms the parallel detection,
in some cases as much as 20%. For the lattice structure,
the largest improvement is in the regime of small packets,
where attack detection is more difficult. In random model
networks, ER and scale-free, there is an improvement of
roughly 10%, which in the Internet structures becomes
around 7%. For the Internet, the advantage of DIAMoND
emerges when both z and p have large values. If one of the
two is small, then both algorithms are equally efficient.
The improved performance of DIAMOND is mainly

due to the successful detection of positive hits. In the
sensitivity plot, DIAMOND detects a significantly larger
fraction of attacked nodes compared to the parallel
algorithm. The rate of detection is rather low, in both
cases, when the packet size is small, independently of how
many nodes take part in the attack. The detection seems
to be more efficient in lattices, but in model and real
networks, the sensitivity increases to 80% only when the
packet size is ~100 (i.e., roughly 10% of the average regu-
lar traffic). For values lower than that, neither algorithm
can have sensitivity larger than 50%. In all cases, though,
the shared information scheme results to a much im-
proved detection rate of true positive hits, with a gain of
10–20%. The two algorithms yield comparable specificity
results with each other. Specificity is always very close to
100%, which indicates that it is difficult to mistake regular
traffic for attack traffic, and there are very few false posi-
tives. This explains also the behavior of the precision,
since almost all hits detected as positive are indeed true
positives. The main drawback of both algorithms is, there-
fore, that there are many false negatives, especially in the
parallel algorithm. In summary, DIAMoND is efficient in
separating true from false positives, but there are also
many false negatives, i.e., undetected positive hits.
The above comparisons were made when the threshold

for the parallel algorithm was equal to the upper threshold

of DIAMoND, si0. We examined how this comparison
changes when the parallel threshold takes the value of the
lower threshold, siL. As shown in Fig. 4, the accuracy of
the parallel algorithm increases, and now it is higher than
in DIAMoND. This increase is mainly due to the im-
provement of sensitivity, which is also larger than in DIA-
MoND. The specificity, though, which above was always
close to 100% now suffers a large drop and even becomes
smaller than 50%. As a consequence, the measurement of
precision also deteriorates a lot. This behavior can be
explained because when we lower the threshold it
becomes easier to detect attacks, but at the same time we
falsely characterize legitimate traffic as attack. In the
extreme case, a very low threshold can characterize all
traffic as attack, with the tradeoff that it is no longer
possible to identify regular traffic.
Our descriptive analysis of the numerical results shows

that the average values of our measures converge satis-
factorily within a margin of a few percent. Since the
large number of simulation conditions makes it very
difficult to present the confidence intervals for all of our
results, we instead present a sample of 95% confidence
intervals for the accuracy, where we use a combination
of the p and z parameters: p = 0.05 and p = 0.2 with
z = 10 and z = 120, for all six network topologies
(Fig. 5). The confidence intervals are quite narrow,
relative to the means. These results are representative of
the results from the entirety of our simulations. (Note that
traditional frequentist statistical tests, e.g., p values, are
inappropriate since significance of any level can be
achieved simply by increasing the number of simulation
replicates performed.)

3.2 Uniformly distributed traffic
In order to determine the efficiency of the DIAMoND
algorithm under varying conditions, we studied additional
regular traffic patterns. Here, we assume that network

Fig. 4 Results for Gaussian traffic. Same as Fig. 3, but now for the parallel algorithm, we use the lower threshold, siL

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 6 of 10

traffic in a node follows a uniform distribution with time,
as described in the Section 2. The threshold values are
different than in the case of Gaussian distribution, because
they have been selected to correspond to the same point
in the cumulative distribution function. This means that,
in the absence of attack, the same percentage of regular
traffic is mislabeled as attack packets, independently of
the traffic distribution.
In general, the accuracy improves significantly, both in

DIAMoND and the no-sharing algorithms (Fig. 6). Except

for very small values of the packet size z, accuracy is now
larger than 90%. The network structure has a minor influ-
ence in accuracy, and the results are largely agnostic to the
substrate. All the measures that we calculated—accuracy,
sensitivity, specificity, and precision—have values close to
100%. There is not a notable gain in using one algorithm
over the other, but the precision and specificity seem to
work better for the parallel algorithm. The gain is minimal,
though, because both algorithms are very close to perfect
detection for all values of z and q.

Fig. 5 The 95% confidence intervals of accuracy for Gaussian traffic. The results refer to the simulation conditions of Fig. 3. The p and z values are
shown on the plots. The results for DIAMoND are shown in black, and the results for the parallel algorithm are shown in red

Fig. 6 Values of accuracy, sensitivity, specificity, and precision for uniformly distributed traffic. For the parallel algorithm, we use the upper
threshold, si0

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 7 of 10

The increased detection efficiency, compared to Gaussian
traffic in Fig. 3, is due to the enhanced sensitivity. The algo-
rithms can separate attack from noise better now, because
they succeed in the detection of true positives and there are
very few false negatives.
In the above discussion, the threshold for the parallel

algorithm was fixed to the upper DIAMoND threshold
value, si0, and there was no clear advantage of one
method over the other. When we move the parallel
threshold to the lower value, siL, then DIAMoND out-
performs the parallel algorithm again (Fig. 7). The re-
sults for the parallel algorithm become less accurate, and
specificity decreases significantly. The metric that mainly
suffers from the lower threshold is precision because
now false positives increase. In cases of small packet size
z and/or small fraction of compromised nodes, there is a
dramatic change of precision from an almost perfect
precision (for the upper threshold) to a complete failure
(less than 50% for the lower threshold).

3.3 Exponentially distributed traffic
As an extreme example of inhomogeneous traffic, we stud-
ied the case where traffic through a node follows an expo-
nential distribution over time. In this case, we do not
expect the detection algorithms to be efficient, because
even regular traffic can assume very large values. Therefore,
without any additional information it is very hard to deter-
mine if increased traffic is due to an attack or not.
This behavior is verified in Fig. 8. The accuracy for

lattices, ER networks, and (partially) scale-free networks
with weak hubs is very low and in most cases does not
even exceed 50%. For systems with strong hubs, such as
the real CAIDA networks that we studied, the accuracy
increases but still remains relatively low, at the level of
75%. The sensitivity fails to reach 50% under any
circumstances, but the specificity is very high. This

simply means that the algorithms cannot detect positive
hits, but they do not have a problem in detecting the
absence of attacks (true negative). The precision is quite
high, which indicates that when a positive hit is detected,
then there is a low probability that this is a false positive.
In short, for exponential traffic, the algorithms are
successful when they identify an attack, but they cannot
identify the majority of attacks, leading to a huge number
of false negatives.
The differences between the two algorithms are not

significant, even though DIAMoND outperforms the par-
allel algorithm in precision. When we lower the threshold
(Fig. 9), the results for the parallel algorithm deteriorate
and the detection of true negatives drops by almost 10%.
In these cases, DIAMoND offers an overall better
performance in accuracy, specificity, and precision.

4 Conclusions
We performed an expanded analysis of a recently
introduced algorithm (DIAMoND) for attack detection
through nonparametric information sharing. We simu-
lated different conditions, with the aim of understanding
the performance of the algorithm under a controlled
environment. As a result, the algorithm was assessed for
different traffic substrates, different distributions of regu-
lar traffic, different sizes of the attack packets, and differ-
ent number of nodes taking part in the attack.
The algorithm performed exceptionally well under

almost all the metrics and independently of the simulation
conditions, when traffic was gaussian or uniformly distrib-
uted. In the extreme case of exponential distribution, DIA-
MoND did not manage to maintain its accuracy, mainly
because it could not detect the majority of positive hits,
even though identified positive hits were almost never false.
The results of the algorithm were evaluated against a

parallel algorithm, where there was no information

Fig. 7 Results for uniform traffic. Same as Fig. 6, but now for the parallel algorithm, we use the lower threshold, siL

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 8 of 10

sharing among the participating nodes. In this case, traf-
fic in a node is compared to a pre-defined threshold, in
order to decide if the node is under attack or not. In the
majority of the cases, DIAMoND outperformed the
parallel algorithm by a wide margin. In a few cases, the
opposite was actualy true. Even in these cases, though,
the information-sharing algorithm was an improvement
in some aspect, e.g., performing better in precision even
though accuracy was worse.
In summary, we found that sharing a general level of

concern with neighboring nodes allows for an efficient
detection of DDoS attacks, and many times, this is done
with a near perfect accuracy. The comparison of this
scheme with a strictly local algorithm lacking communi-
cation shows that the DIAMoND is more reliable in the
majority of the studied conditions.

The results presented here explored only the impact of
network topology; however, earlier work considered the
performance of DIAMoND on simplified topologies but
under more realistic scenarios of network traffic [9, 10].
These same studies also explored the impact of having only
partial participation among network nodes (where the rest
of the nodes employed purely parallel detection and did
not use or share non-parametric information). Results
demonstrated improvement over purely parallel systems,
and that the majority of performance gain can be achieved
in simplified networks with only 30% node participation.
These features have now been explored independently,
but the emergent behavior of any self-organizing system
depends on the synergistic behavior of all the elements
acting together. Now that we have a foundational un-
derstanding of the influence of these features on

Fig. 9 Results for exponential traffic. Same as Fig. 8, but now for the parallel algorithm, we use the lower threshold, siL

Fig. 8 Values of accuracy, sensitivity, specificity, and precision for exponentially distributed traffic. For the parallel algorithm, we use the upper
threshold, si0

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 9 of 10

Gallos et al. EURASIP Journal on Information Security (2017) 2017:5 Page 10 of 10

DIAMoND system performance, the immediate next
step for future work will be to explore the combined
impact of these features.

Acknowledgements
This material is based upon work supported by the NSF under Grants
CNS-1646856 (LKG) and CNS-1646890 (NHF). This research was also supported
by the US Department of Homeland Security sponsored under the Air Force
Research Laboratory (AFRL) agreement number FA8750-12-2-0232.

Competing interests
The authors declare that they have no competing interests.

Author details
1DIMACS, Rutgers University, Piscataway, NJ, USA. 2Department of Ecology,
Evolution, and Natural Resources, Rutgers University, New Brunswick, N J , USA.
3Faculty of Technology, Policy and Management, Delft University of
Technology, Delft, The Netherlands. 4Department of Ecology and
5Department of Mathematics, University of Tennessee, Knoxville, TN, USA.

Received: 16 November 2016 Accepted: 16 February 2017
Published online: 28 February 2017

References
1. Meng, Weizhi, and Wenjuan Li, A Review of Network Intrusion

Detection in the Big Data Era, Networking for Big Data 2 (2015):
195.

2. Yegneswaran, V., Barford, P., and Jha, S, Global Intrusion
Detection in the DOMINO Overlay System, in Proceedings of
NDSS, 2004

3. Chhabra, P., Scott, C., Kolaczyk, E. D., and Crovella, M. (2008).
Distributed Spatial Anomaly Detection, in Proceedings of
INFOCOM, IEEE, pp. 1705–1713

4. MITRE, Structured Threat Information eXpression: A Structured
Language for Cyber Threat Intelligence Information. [Online].
Available: https://stix.mitre.org. Accessed 27 Feb 2017.

5. MITRE, Trusted Automated eXchange of Indicator Information:
Enabling Cyber Threat Information Exchange. [Online]. Available:
https://taxii.mitre.org. Accessed 27 Feb 2017.

6. CybOX, Cyber Observable eXpression [Online]. Available:
https://cybox.mitre.org. Accessed 27 Feb 2017.

7. Jelena Mirkovic and Peter Reiher, A taxonomy of DDoS attack and
DDoS defense mechanisms. SIGCOMM Comput. Commun. Rev. 34, 2
(April 2004), pp. 39-53.

8. Serrano, O., Dandurand, L., and Brown, S, On the Design of a Cyber
Security Data Sharing System, in Proceedings of the ACM Workshop
on Information Sharing & Collaborative Security. ACM, 2014, pp. 61–
69

9. M. Korczyński, A. Hamieh, J. H. Huh, H. Holm, S. R. Rajagopalan,
and N. H. Fefferman, DIAMoND: Distributed Intrusion/Anomaly
Monitoring for Nonparametric Detection, in Proceedings of IEEE
ICCCN, 2015, pp. 1–8.

10. M. Korczyński, A. Hamieh, J. H. Huh, H. Holm, S. R. Rajagopalan,
and N. H. Fefferman, Hive Oversight for Network Intrusion Early-
warning using DIAMoND: A bee-inspired method for fully distributed
cyber defense, in IEEE Communications Magazine, vol. 54, no. 6, pp.
60-67, June 2016

11. J. Leskovec, J. Kleinberg and C. Faloutsos, Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations.
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2005.

12. Erdos, P. & Renyi, A, On the evolution of random graphs. Magyar
Tud. Akad. Mat.Kutato Int. Kozl 5, 17-61 (1960).

13. A.-L. Barabasi & R. Albert, Emergence of scaling in random networks.
Science, 286:509-512 (1999).

14. M. Molloy & B.A. Reed, Critical point for random graphs with a given
degree sequence. Random Structures and Algorithms, 6:161-180
(1995).

15. L. Skarpalezos, A. Kittas, P. Argyrakis, R. Cohen, & S. Havlin.
Anomalous biased diffusion in networks. Physical Review E,
88:012817 (2013).

16. Maciej Korczyński, Lucjan Janowski, Andrzej Duda, An Accurate
Sampling Scheme for Detecting SYN Flooding Attacks and
Portscans, in Proceedings of IEEE ICC 2011: 1-5

17. Haining Wang, Danlu Zhang and Kang G. Shin, Detecting SYN
flooding attacks, in Proceedings of IEEE INFOCOM, Twenty-
First Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, 2002, pp. 1530-1539

18. Richard Deal. 2004. Cisco Router Firewall Security. Cisco Press.
19. Lukas Kramer, Johannes Krupp, Daisuke Makita, Tomomi

Nishizoe, Takashi Koide, Katsunari Yoshioka, and Christian
Rossow, AmpPot : Monitoring and Defending Against
Amplification DDoS Attacks, in Proceedings of RAID . 2015, pp.
615-636

20. Jose Jair Santanna, Romain Durban, Anna Sperotto, and Aiko
Pras, Inside Booters: An Analysis on Operational Databases, in
Proceedings of IFIP/IEEE IM. 2015, pp. 432–440

21. Arman Noroozian, Maciej Korczyński, Carlos Hernandez Ganan,
Daisuke Makita, Katsunari Yoshioka, and Michel van Eeten, Who
Gets the Boot? Analyzing Victimization by DDoS-as-a-Service, in
Proceedings of RAID. 2015, pp. 368-389

	JIS17Gallos
	Abstract
	Introduction
	Methods
	Network topologies
	Internet traffic
	Gaussian
	Uniform
	Exponential

	DDoS attack
	The detection algorithm
	Independent detection
	Simulation details
	Evaluation of the results

	Results and discussion
	Gaussian-distributed traffic
	Uniformly distributed traffic
	Exponentially distributed traffic

	Conclusions
	Acknowledgements
	Competing interests
	Author details
	References

	strona10-final

