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Abstract

The subject of trac class c ation is of great importance for e ective network
planning, policy-basal trac managemaent, application prioritization, and searity
control. Although it hasrecdved substantial attention in the research community
there are still many unrelved iswues, for example how to classfy encryptedtrac

ows. Thisthedsiscomposed of four parts. The r st part presets sometheoretical
aspedsrelatedto tra c classi cation and intrusion detection, whilein the following
three parts we tackle speci c classi cation problemsand proposeaccurate solutions

In the second part, we proposean accurate sanmpling scheme for detecting SYN

ooding attadks as well as TCP portscan activity. The scdheme examines TCP
sggments to nd at least one of multiple ACK segmerts coming from the server.
The method is simple and sclable, because it achieves a good detection with a
False Posttive Rate closeto zero even for very low samging rates. Our tracebased
simulations show that the ee ctivenessof the proposed scheme only relies on the
sanpling rate regardless of the samging method.

In the third part, we consider the problem of detecting Skypetrac and class-
fying Skype sewice ows auch asvoice calls, skypeQut, video conferences, chat, le
upload and download. We propose a classi cation method for Skype encrypted traf-

¢ basedon the Statistical Protocol IDerti ¢ ation (SPID) that analyzes gatistical
values of sometra c attributes. We have evaluated our method on a represeatative
datasetto show excelent performancein terms of Predsion and Recal.

Thelast part de nesaframework basedon two complementary methodsfor clas-
sifying application ows encrypted with TLS/SSL. The rst one models TLS/SSL
sesgon states asa rst-order homogeneous Markov chain. The parameters of the
Markov models for ead considered application di er a lot, which is the basis for
acaurate disaimination between applications. The secord class er consders the
deviation between the timestamp in the TLS/SSL Server Hello messageand the
padket arrival time. It improvesthe acauracy of application classic ation and al-
lows e cient iderti cation of Skype ows. We conmbine the methods using a Naive
BayesClass er (NBC). Wevalidate the framework wit h experimentsonthreerecent
dataselw e apply our methods to the classi cation of seven popular applications
that use TLS/SSL for secuity. The reailts show a very good performance.
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Resume

Le sujet de la class cation de tra c reseau est d'une grande importance pour
la plani c ation de reseau e cace la gegion de trac a basede regles, la gestion
de priorite d'applications et le contrdle de seaurite. Bien qu'il ait recu une atten-
tion congderable dans le milieu de la rederche, ce theme laisse encore de nom-
breuses quegions en suspens comme, par exemple, les methodes de classi c ation
des ux detracschi res. Cettethes estcomposede quatre parties. La premiere
presente quelques aspeds theoriques liesa la class c ation de tra ¢ eta la detec
tion d'intrusion. Les trois parties aivantes traitent des problemes sped q ues de
classic ation et proposent des lutions predses.

Dans la deuxiemepartie, nous proposors une methode d'echantillonnageprecise
pour deteder lesattaquesdetype"SYN ooding" et "portsan”. Le systemeexamine
lessegnents TCP pour trouver au moins un des multiples sgmerts ACK provenant
du serveur. La methode est simple et ewlutive, car elle permet d'obtenir une
bonne detection avec un taux de faux positif proche de zero, méme pour des taux
d'echantill onnagetres faibles Nos simulations bages aur destracesmontrent que
I'e c acite du systeme propose repose uniquement sur le taux d'echantillonnage
indeperdamment de la methode d'echantillonnage

Dans la troisieme partie, nous considerons le probleme de la detedion et de la
classic ationdu tra c de Skype @ de ses u x de sewices tels que lesappels vocaux,
SkypeQut, les video-conferences les messagesinstantanesou le telechargement de

chiers. Nous proposons une methode de dassi cation pour letrac Skype chir e
base sur leprotocoled'identi cation statistique (SPID) qui analyselesvaleurs g atis-
tiques de cetains attributs du tra c ressau Nous avons evalue notre methode sur
un ensenble de donneesmontrant d'excdlentes performances en termes de preci-
sion et de rappel. La derniere partie de nit un cadre fonde sur deux methodes
complementaires pour la class c ation des ux applicatifs chi res avec TLS/SSL.
La premiere modelise desetats de session TLS/SSL par une chame de Markov ho-
mogene d'ordre 1. Les parametresdu modele de Markov pour chaque application
consideree di erent beaucowp, ce qui est le fondement de la disaimination entre
lesapplications La semnde methode de classi c ation estime I'ecart d'horodatage
du messige Server Hello du protocole TLS/SSL et I'instant d'arriveedu paquet.
Elle ameliore la predsion de classi cation desapplications et permet I'i denti cation
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e cacedes ux Skype. Nous combinonslesmethodesen utilisant une Class cation
Naive Bayesienne (NBC). Nous validons la propostion avec des experimertations
sur trois riesdedonneesrecentes Nousappliqguonsnosmethodesa laclassi cation
de sept applications populaires utilisart TLS/SSL pour la securite. Les resutats
montrert une tresbonne performance
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Chapter 1

| ntro ducti on

Contents
1.1 Motivations . . . . . . . . . . e 5

1.2 Overview of thethesis ... ... ..... ... .. ......

1.1 Mot ivati ons

"Accurate identi cation and categorization of network tra ¢ according to appli-

cation type is an important element of many network management tasks such as
ow prioritization, tra ¢ shaping/policing, and diagnostic monitoring.” [1]

"Classifying tra ¢ ows according to the applications that generate them is an
important task for (a) ee ctive network planning and design, and (b) monitoring
the trends of the applications in operational networks." [2]

"Accurate network trac classi cation is fundamental to numerous network ac-
tivities, from security monitoring to accounting, and from Quality of Service to
providing operators with useful foreads for long-term provisioning." [3]

"Thesubject of tra c classi ¢ ation hasa crucial importance for e e ctive network
planning, policy-based trac management, application prioritization, and security
control." (cf. Abstract)

When reading numerous publicationsin the domain of trac class cation and
intrusion detedion many of themin the rst placeemphaszeitsimportancefor op-
erators, Internet Service Providers (ISPs), and local network administrators. How-
ever, for the sake of completeness let us take a look at the problem from a di e rent,
users perspedive. Many of our every day activitiesare dosely assaiated with and
dependat on properly working Intemet connections. Our daily habits consist of
cheking our emails (usually two acmunts, i.e. professonal and private), readng
online news, etc. Other "crucial" activitiesare related to our Facebook and Twitt er
acoounts, daily routine often includes Skype calls. While some of us like online
shopping others prefer di e rent kinds of entertainment such as online gaming or
watching sport everts in the pay-per-view (ppv) system, and many more. Many
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of our daily, legal routines would not be possble without resarch and industry
e ortsin the domain of tra c dassi cation. Thisis why this aubject hasreceived
substanti al attention in the research community and still cortinuesto grow.

Trac classg c ation is, howewer, a challenging taskdueto amassve proliferation
of new applications and new ways of spreadng and infeding unaware, legitimate
users with malicious sottware. Moreover, existing programs tend to use more so-
phisticated communication mechanisms to bypasssecurity checks. As a reallt, we
obseltve a race between illegal applications, such as streaming pirated videos, im-
proving their obfuscation methods and operators searching for new solutions to

Iter unwanted trac and prioritize remaining applications. Although we witness
much research interest in the domain of tra ¢ dassi cation and intrusion detedion,
many isaues gill remain unsolved and even though reseaich community n dsappro-
priate methods, new countermeasues appear rapidly. For example, classi cation
approadesproposal someyears agoand baseal on identifying network o ws acoord-
ing to correponding ports or regular expressionsin unenaypted packet header are
not e ective any longe due to port randomization and trac encryption respec-
tively.

Some of the problems presented in this theds arose after extensive disaussions
with the administrator of the caampus network at AGH University of Sdence and
Tednology in Cracav, whereassone others appeared from an in-depth analysis of
the eisting literature. We further attempt to addressthese problemsby desgning
proof-of-concept classiers. Where we possibly could, we have evaluated our classi

cation methods on realworld datasets captured at edge routers to show excdlent
performancein termsof di erent criteria. Methods presrntedin thethess dealwith
very di erent aspeds of trac classi cation, from network attadk detedion to the
classi c ation of encrypted applications.

1.2 Overview of the thesis

The preentedwork is divided into four parts composedof densechapters. Each
part of the thesis g¢arts with a short introduction chapter with briey described
contributions and the list of corregponding publications (if applicable). Moreover,
practical parts involve a complementary discusson on theoretical issues sped ¢ to
the addresse problems. Finally, we briey surveythe related work relevant t o each
part of the thesis.

In Part I, we describe some trac class c ation aspects. We present a tax-
onomy of network trac class c ation as well as a short disaussion on intrusion
detedion methods. Part Il introduces an accurate method for SYN o oding attack
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and portscan acivity detection using sampling techniquesto limit t he volume of
inspected data. In the third and fourth part of the thesis, we focus on encrypted
trac class cation. In Part Il , we develop a hybrid methodology basedon ow and
contert features for identifying TCP Skype ows tunneled over the S protocol
and classifying its srvice ows. In Part IV, we propose a framework for classifying
TLS/SSL ows of various applications.






Part |

State of the Art






Chapter 2

| ntro ducti on

The importance of appropriate tra c class ¢ ation methods continues to grow.
They are esential for e ective network planning, policy-basel tra ¢ managenent,
application prioritization, and security control. However, traditional classi cation
methods are becoming lesseci ent, becawse new applications begin to use sophis-
ticated obfuscation mechanisms and an increased number of applications make use
of encryption to avoid seaurity checks. Moreover, applications are rapidly adapting
to counteract attempts to identify certain typesof tra c , creating new challenges
for trac class c ation schemes

We usethe expression tra c classi c ation to refer to two areas of our interest
acoording to speci ¢ goals, namdy to application classi ¢ ation and intrusion detec
tion aswell asto methods of classifying tra ¢ data se s basal on features passiely
obsewved in the Intemnet trac . In the following chapter, we discuss the above-
mentioned agpects of trac classi cation with regect to classi cation goals|jw e
start with the formal de nition of tra c classi cation, followed by a brief survey
on the class c ation and intrusion detection methods. Finally, we introduce two es-
sential concepts of the ground truth and the metrics of classi cation performance.

2.1 Contribut ions of Part |

The main cortribution of this part is an extension to the payload-basa tax-
onomy based on the resarch presnted in the theds. More sped c ally, we intro-
duce a more general taxonomy of payload-based methods in comparison to existing
ones. We proposeto distinguish between the type of data to be analyzed rather
than between veri c ation or procesing tecniques. We make a distinction be-
tween message-tasal and header-based analysis and we separate the analysis of
lower-layer protocol heacers, in particular network and transport layers, from the
application-layer protocol header. We argue that in some class c ation problems
the analysis of lower-layer protocol eldsis su ciert, while in other caesa more
detailed application-layer protocol header analysis is required.






Chapter 3
Background on Tra c
Class ca tion

Contents
3.1 De nition of Trac Classication................ 13
3.2 Classi cation Goals ... ... ... ... . . . ... 14
3.3 Classi cation Approaches . ... ................ 15
3.31 Port-based approach . . . . .. ... ... oL 17
3.32 Payloadbasdapproach . . ... ... ... . ... ....... 18
3.33 Host behavior-based approach. . . . .. ... ... ....... 19
3.34 Flow feature-based approach . . . . .. ... ... ... .... 20
34 Methods . ... ... .. . .. 21
3.41 Pattern Matching. . . .. ... .. ... ... .. ... .. ... 21
3.42 MachineLearning . ... ... .. ... . ... ... 21
3.5 Feature Selection. . . ... ... ... . ... . ... 23
3.6 Intrusion Detection . ... ... ... ... ... ... ... . 24
3.7 Ground Truth . ... ... ... . .. 26
3.8 Criteria for Classi cation Performance . ........... 27
3.9 Summary ... 28

3.1 Deni tion of Tra c¢ Class ca tion

Trac classic ation is a resarch areathat helps us to understand the nature
of the Internet trac . It consist of examining IP padkets to extract somesped ¢
features to answer somequedions related to its origin, the carried content, or user
intensions. Frequently, it deals with packet ows de ned as sequences of padkets
uniquely identi ed by the samesource IP address source port, dedination IP ad-
dress destination port, and transport layer protocol. Howewer, padkets might be
grouped in any way acoording to classi cation needs.
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Let us now formalize the tra c classi c ation problem. A pattern p represents
the object under analysis. Each pattem is desribed by a set of n features that
have been derived from the analyzed trac . Thus, it can be interpreted by the
n-dimensional random variable X that corregponds to an acaurate se of features:
P! X = (X1;X2;X3; 1115 Xa)-

In the application classi ¢ ation problem, where p could be represated by ows,
we attempt to assign each of them to one of the given application classes de n ed by
arandomvariable Y :y = fy1;y2;:::;Ye; Ver1 0. Y = Yer1 Meansthat the analyzed

ow is not recognized as any of the given classes i.e,, it is unknown.

In the intrusion detection problem p could be represated by the aggregated
trac directed to the specic IP destination address Thus, intrusion detedion
refers to a binary classi cation problemlw e attempt to verify if thetra cto an-
alyze wrresponds to malicious behavior. Random variable Y takesvaluesin the
sd fyp;y10, where Y = yop meansthat thetrac conforms to legitimate behavior,
whereasY = y; indicates malicious acti vity.

In the preentedthesis, solving thetra ¢ class c ation problems corresponds to
de ning class ersthat categorize each pattemn into one of c => 2 classes

3.2 Classi cat ion Goals

Although the research area of tra c classi cation is rather speci c, the motiva-
tions of resarch papers are not identical [4].

In Figure 3.1, we present t ypical classi ¢ ation objectivesor, in other words, three
di erent domains, where proposed methods operate. More predsely, somemethods
classify trac acoording to its category, i.e., whether the trac represats bulk-
trander, pee-to-pea (p2p) content sharing, games, multimedia, web, or attadks [3,
5,6,7,2]. It isalsoreferredto asthe coarse-grained classi ¢ ation goal[8]. A number
of methods aim at idertifying the application-level protocol such as FTP, HTT P,
SSH, Telnet [9, 1, 10, 11, 17], alsoreferredto asthe ne r-grained classi ¢ ation goal
[8]. Thelastgroup of methods classi esthetra c according tothe exact application
that generatestrac , such as Skype, Dropbox, eBay.

Unfortunately, usas tend to confuseapplication classi cation with application -
level protocol class cation (cf. Figure 3.1) [13]. For instance,classi cation of Skype
trac illustrates the problem. It relies on a p2p infrastructure while its primary
objective is Voice over IP (VoIP) sewice delivery. Moreover, for data trangmisson
it usesits proprietary Skype protocol, butthe HTT P or HTT PS (HTTP over S9)
protocols might be used aswell. As a resut, it might not be dear how to classfy
such trac . Likewise due to strict policies enforced by r ewalls and restrictions
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Category Application Agfgt% aé:jn

Web > eBay HTTP
HTTPS

VolP y» Skype

P2P - > Emule » Edonkey2000

Figure 3.1: Classification goals.

for certain streaming and p2p applications, users commonly tunnel restricted traffic
with Secure Shell (SSH) or SSL protocols. In both discussed examples, the classifi-
cation results will be different according to classification goals. On the other hand,
older applications defined their own communication solutions based on proprietary
protocols such as BitTorrent or eDonkey2000, which makes the discussed problem
trivial to solve. Nowadays, however, applications increasingly use other existing
protocols such as HTTPS (cf. Figure 3.1) to tunnel their traffic and by doing so to
bypass restrictions set by network configuration.

In the second part of the thesis, we propose a sampling detection scheme of
SYN flooding attacks and portscan activity—we aim at classifying traffic according
to its category. In Part III of the thesis, we attempt to solve even more detailed
classification problem by proposing an accurate method for detecting Skype traffic
and classifying its service flows such as voice calls, skypeOut, video conferencing,
chat, file upload and download. In Part IV we propose a more general method
to effectively classify application flows encrypted with TLS/SSL protocol, namely
PayPal, MBank (an on-line bank service), Mozilla, Twitter, Opera, Gadu-Gadu (a

popular Polish instant messenger), and Dropbox.

3.3 Classification Approaches

The selection of an appropriate approach used for traffic classification evolves
with application development [4]. The variety of new Internet applications including
services such as streaming, online gaming, p2p file sharing, or video/voice confer-
encing have intensified research efforts to discriminate against such applications.

These, in turn, have inspired sophisticated obfuscation mechanisms. Figure 3.2 [4]



16 Chapter 3. Background on Traffic Classification
[Cleartext transmission] [ Encrypted(tunneled ]
transmission
Application

developement

Open protocol

Proprietary
protocol

[ Fixed ports ] [ Mixed ports ] [Random ports]

Time
Classification Payload- Flow Hos.t
approaches Port-based based feature- behavior-
based based

Figure 3.2: Trends in application development and classification approaches.
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rewalls|i t randomly seleds ports and can switch to port 80 or 443if it fails to
edablish a connedion on dynamically chosen ports. As a reallt, simple inspection
of port numbers is no longer a reliable classi cation mechanism [5, 15], espedally
when identifying applications

Some reent studies critically revisit tra c classic ation including methods
basedon transport layer ports [16]. One of several insights of their studies is that
ports still remain an important discriminator, particularly when combined with
other features auch as padkets sizes, TCP agsand protocol information. Howewer,
their classi cation objectivesare di e rent from those presentedin Parts Il and IV.
The methods evaluated in their studies aim at application protocol class c ation
rather than in detailed application classic ation.

Maier et al. investigated the characteristics of resdertial broadband Intemnet
trac using padcet-level tracesaugmented with the DSL sesdon information [17].
Their most signi carnt conclusion isthat p2p is no longer dominant tra cin terms
of bytes. HTTP once more seemsto carry most of thetrac . Their class cation
method was based on a purely port-based approad, showing quite good resuts
for their dataset. However, for a more detailed analysis aiming at the con rma-
tion of the relevance of the port-basedapproad, they have examined the HT TP
Content-Type heacder and the initial part of the HTTP body. Moreover, with this
methodology, they only attempt t o distinguish between p2p and HTTP. Finally,
when analyzing application ewlution, presentedin Figure 3.2, we can obsave that
redricted applications tend to encrypt/t unnel their trac throughHTTP Sor even
through HTTP (e.g. Skype), which makes class c ation of p2p applications a par-
ticularly challenging task

3.3.2 Payload-based appr oach

The seoond content-basal approad involves inspecting the padket payload and
for years, it wasconsidered asthe most acaurate method. As soon aswe an identify
a unique payload-based signature, this technique can producereliable classi cation
reaults [5, 7]. Moreover, payload-basel classi ers are often used to establish ground
truth for other methods [16, 18]. Nevertheless due to privacy issues and payload
encrypti on other techniques have received more attention in the research commu-
nity. We agreewith the primary argument concerning users privacy, but we argue
the common belief that payload-basedmethods always fail whentra cisencrypted
[13, 4].

Riso et al. introduced a taxonomy of payload-based class ¢ ation approaces
regarding payload veri cation and processng methods. The former de nes four de-
grees of veri c ation. The r st aims at locating somemessagesignatures, the se@nd
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syntactical one, cheds if the messgeis well formed, eg., HTT P payload must con
tain HTT P headers. The third relatesto protocol conformance controlling client-
saver messageexchange while the semantic one veri e s the type of object sent
by the application layer protocol. The secord taxonomy discusses payload-based
processing methods, namdy packet-based and messagebasal tedniques, from a
simple one that operates by chedking some basic padket-header information to a
sophisticated one that condsts of inspecting and interpreting exactly what ead
application transmits.

In this theds, we propose a more general taxonomy of payload-based classi-
cation conceming the type of data to be analyzed rather than veri ¢ ation or pro-
cesdng techniques We proposeto make a disti nction between messagebased and
header-basedanalysis as shown in Figure 3.3. Moreover, we proposeto separate the
analysis of lower-layer protocol headers (until transport layer) from the application-
layer protocol header since in some classi cation problems, the analysis baseal only
on network and transport layer elds is suci ent, while in other cases, a more
detailed application-layer protocol header analysis is required.

The method presented in Part 1l of this thesis illustratesan example of lower-
layer protocol header analysis|w e have proposed a scheme for deteding SYN o od-
ing attadks and portsansthat is based on identifying TCP SYN segments and cor-
reponding ACKs. Furthermore, Sen et al. [7] presnted an approad to idertify
the eDonkey protocol based on the application layer header analysis. More spedf-
ically, the authors dismvered that signaling and downloading TCP padkets have
a particular eDonkey heacder on top of the TCP heade. In the same paper, the
authors proposea simple signature to revealthe Kazaatra ¢ basal on the analysis
of the HTTP protocol. Now, let us consider TLS/SSL encrypted tra c. Indeed
both messageand "old" application layer protocol header are encrypted so simple
pattern veri ¢ ation methods basead on signatures will fail. In Part Il and IV of this
thessk, we adopt a payload-based approach to demondrate that it is gill possble
to e ectively reveal and classify encrypted ows by inspeding "new" application
layer protocol, namdy TLS/SSL. Moreover, Bon glio et al. have investigated the
Skype tra c transported by the UDP protocol [18]. They concluded that the en
crypted Skype UDP message can be identi ed by examining the initial portion of
the payload the so-alled Start of Mesage(SoM) located on top of the header.

3.3.3 Host behavior-ba sed appr oach

Host behavior-based approaces|2, 19] can potentially addresssomelimitations
of content-based methods. The approac is based on the analysis of the social
behavior of network hogs and can be obsavable even when payload is encrypted.
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More sped cally, social interacti ons between communicating hods are represented
by graphs that visualize the "who-talks-to-whom" relationship. The classi cation
consists of matching previoudy obsaved graphs with graphs resulting from the
behavior of a hog under examination [2].

BLINC, for example, proposes an intereging method based on obseving and
recognizing models of hog behavior and then classfying its ows acoording to the
models [2]. It analyzes patterns at three levels: (i) social lewelli t inspeds the
interaction with other hosts, (ii) functional level|it cheds whether a host ads as
a consumer or a provider of the sewice (or both), (iii) application lewvel|li t records
the trangport layer ports to identify the origin of the application.

Iliofotou et al. introduce the idea of Tra ¢ Dispersion Graphs (TDGs) as a
promising monitoring and classi c ation tool [19]. Their work on TD Gs represens
a natural extension of the previous approach. More precisdy, they proposea di er -
ent way of looking at network trac |t hey focus on network-wide interactions of
hosts instead of modeling single host behavior. The sameauthors extended their
previous work and developed a proof of the concept t o deted p2ptrac [20]. Their
application classi cation framework, evaluated on real-world badkbone traces can
identify 90% of p2p ows with 95% predsion.

3.3.4 Flow feature-based appr oach

The second fundamentally di er ent group of content independernt methods uses
ow features such as average packet sizes, padket inter-arrival times,or ow dura-

tions(cf. Section 3.5). Featuresare computed over multiple padketsgrouped in o ws
and further usedin the training proces that associates sés of featureswith known
trac classes. The dassi cation congsts of a statistical comparison of unknown
trac with previously leamed rules[21]. Flow feature-based approaces mainly
include data mining techniquesand machine leaming algorithms. We do not, how-
ever, describe thes tedniques when disaussing approades based on the analysis
of ow features because more and more other approacesincluding content-based
ones use machine learning in class c ation purposes. Instead, we brie y discuss
classi c ation methods in Section 3.4.2.

For example, Bon glio et al. [18] presnted a framework based on two com-
plementary techniquesto reveal Skypetrac . The semnd approad is based on a
stochadic characterization of Skype trac in terms of the padet arrival rate and
padket length, which are used as features of a dedsion proces basal on a Naive
Bayegan Classi er (NBC).

Moore et al. [3] proposed a statistical approad to classify trac into di erent
types of sewvicesbased on a combination of ow features auch as ow length, time
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between consecutive ows, or inter-arrival times. The classi cation processusing
a bayedan classi e r combined with a kernel density egimation method leads to an
acauracy of up to 95%.

3.4 Metho ds

While machine learning algorithms using ow features for trac classi cation
received substantial attention, the content-based approadesmainly relied a simple
pattern matching [13]. In recent studies, however, several hybrid solutions basedon
machine learning meth ods and taking into account content featureswere proposed
[22, 23, 18, 24, 25, 12]. In this sedion, we presernt a brief survey of somepopular
methods (cf. Figure 3.4) usedin class c ation approades disaussedin the previous
section.

3.4.1 Pattern Matchi ng

A few years ago, simple pattern matching combined with content-based ap-
proaches was one of the most accuate class cation methods. However, pattern
matching based on identifying the application level signaturesis lesse ective (if
possble) in the case of encrypted trac . In one of the mog interesting papers
considering the pattern matching problem in recent years [7], the authors provide
an e cient method for idertifying ve popular p2p applications through applica-
tion level signatures. All of the proposed signatures however, becomne usdessonce
trac encryption or tunneling methods are applied. Ris® et al. [13], argue that
content-basal approaches are mainly based on pattern veri ¢ ation, thusthey always
fail in the caseof encrypted trac and often in the caseof tunneled trac. We
argue howewer, that a key challengein encrypted trac classi cation isto replace
traditional pattern veri ¢ ation with more sophisticated methods based on statistical

ngerprints.

3.4.2 Machine Learning

In the lag few years, madchine leaming algorithms using o w featuresfor trac
classi c ation hasreceved substantial attention [26, 27, 16, 3]. Morerecertly, several
authors have investigated the use of machine leaming techniques with payload in-
formation [22, 23, 18, 25]. In gereral, machine leaming algorithms are categorized
into supervised leaming and unsupervised learning (cf. Figure 3.4). Supervised
leaming requires some labeled data to generate models of applications of interest,
whereasunsupervised leaming clusters ows with similar characteristics Since our
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This sction provides only some insight into methods used in the thesis. The
formal de nitions are preseited in relevant chapters.

3.5 Featur e Selection

As it washighlightedin the previoussedion, the majority of trac classi cation
methods use someform of machine learning techniquesto build trac models from
obsewved data. They share the general idea of measuring the distance of new ob-
jects from the leamed models that represent particular trac classes In pradice,
howewer, the ee ctiveness of trac classi cation frameworks strongly depends on
the doice of trac attributes or features. Two families of features have recertly
beenusd for trac analysis. The rst one cnsists of the in-depth analysis of the
padket content, whereasthe sewmnd one relieson ow-leve statistics.

Various packet contert features have beenapplied to trac classi cation, such
as an IP address[31, 32|, a transport layer protocol [33], a padket (payload) size
[33, 34, 35, 36, 37, 38, or particular valuesin TCP and UDP heacders[31, 18], for ex-
ample, a port number [5, 3, 39, 40, 41] and TCP ags[42, 43, 44, 45, 32, 41]. While
padket header basal featureshave provedto be e ectivein trac class cation and
against some network attadks, other classi cation problemsrequire more advanced
payload processing techniques. Thus, Deep Padket Inspection (DPI) methods have
beenproposal to create some payload-basal signatures basel on anin-depth anal-
ysis of application layer data [23, 18, 22, 5, 2, 46, 18]. Moreover, features basel
on the relationship between various metrics have been applied in many class ca-
tion problems|[23, 22, 2]. For example, the detedion methods basal on matching
TCP control segments such as SYN and FIN (or RST) pairs have been proposed
in intrusion detedion [42]. Furthermore, the approach basel on the relationship
between the number of dedination IP addresesand ports for sped ¢ applications
per souce IP hasbeenproposal in tra ¢ dassi cation [2].

On the other hand, resarchers proposethe use of ow-level features, such as

ow duration [33, 3, 27, 47], a number of packets per ow [33, 31, 32], a variance
and/or an average,minimum, maximum value of inter-arrival time [33, 31, 34, 18, 3,
26, 48, 27, 47, 49, 50|, packet (or payload) sizes per ow (or per few rst padkets of
the ow) [31, 51, 18, 2, 3, 26, 52, 27, 49, 50], a bit rate [51, 35|, around-trip time[35],
a ow size[3, 27], or time between conseaitive o ws[3]. Moreover, joint application
of somemetrics have been proposed, for example, distribution of ow duration and
number of packets transferred [53], or diredion and padket size distribution [22].

In the second part of this theds, we propose a scheme that relies on the simple
and robust padket heacer feature basal on matching TCP SYN segmertsto at least
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one of multiple ACK segments coming from the sever side. In Part Il , we presert
a hybrid method that combinestrac ow features with complex DPI elements
to idertify Skype service ows (cf. Sedion 9.1.2). Finally, the last part de nes
a framework baseal on two complementary methods applying payload features for
classifying application ows encrypted with TLS/SSL. The rst proposedMarkov
Class er takesinto account messagetypesin a TLS/SSL session asa class ¢ ation
feature while the semnd class er condders the deviation between the timegamp
in the TLS/SSL Server Hello messageand the packet arrival time.

A common problem in the domain of trac classic ation is to decide among
di erent featuresto be used The feature sekction can be done manually, but a
better strategy is to have a leaming algorithm that deddeswhich set of features
is the best. The problem of automatic feature sekction has been well studied in
the context of trac classic ation [54, 55, 56, 57] and anomaly detection [58]. In
the third part of this thesis, we face the problem of seleding an appropriate subset
of features called attri bute meters. We applied a method called forward selection
basedon the Analysis of Variance (ANOVA) [59]. It consists of starting with an
initial attribute in the model trying attributes one by one, and adopting them, if
they improve the dassi cation performance.

3.6 Intrusion Detection

In this section we focus on a spedal caseof trac classic ation, naméy on in-
trusion detection. At rst sight, the main di er ence between intrusion detedion
and, for instance application identi c ation is the number of tra c¢ clases condd-
ered in the classi cation process (cf. Section 3.1). Moreover, in terms of trac
classi ¢ ation goals disaussed in Section 3.2 the objective of intrusion detedion is
to categorize trac aseither intrusive or legitimate. Nevertheless the crucial im-
portance of network secuity resulted in decowling intrusion detection fromtra c
classi c ation.

Two detection approaches have received substantial attention in the resarch
community, namdy signature-based and anomaly-based detedion. Although, they
are opposite in nature, they share a common drawbad|t hey require an in-depth
knowledge of network tra ¢ to be e ective. Therefore, they are colledively referred
to as knowledge-basal detection approaches [60]. A relatively new research area in
intrusion detection that can potentially overcomethe limitationsof knowledge-basel
approadesrelieson unsupervised anomaly detedion. In the rest of this section, we
briey discussthreeapproachessummarizedin Figure 3.5

The signature-basal approach [61] requires an extensive knowledge of security
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Section 5, we focus our attention on more sped c problemswe had to face when
proposing a scalable anomaly-detection sampling scheme of high-volume malicious
trac composedof SYN ooding attacks and low-volume portscan activity.

3.7 Ground Truth

The appropriate se of pre-labeled padket tracescontaining the so-called ground-
truth information is one of the key aspeds in any classi cation problem. The two
mog popular approaches employ the following procedures. The rst one consists of
the manual gereration of Internet tra ¢ by running a broad pool of applications on
many machines. Nevertheless, such a datasd might not cover realistic application
instances and trac characteristics due to the ladk of live, human interactions.
The second approach assumesassigning tra ¢ labels to all ows by means of DPI
methods after padket capturing. However, simple pattern-matching techniquesare
not reliable anymore due to many obfuscation mechanismsand trac encryption.
Moreover, mos of the eisting methods deal with ground-truth ow labeling in
the protocol domain [1, 16]. A recent ground-truth class er that could potertially
ful Il our requirementsisbasedon a pre-nstalled client t ool to supervise a kernel of
eat monitored hog [69]. Even if the presented results are very promising, we need
to nd a number of users who consert t o be monitored with the classier. Finally,
the same authors compare sone previous methods based on the joint port analysis
and payload inspection [70]. The experimental results demorstrate that, in many
cases the ground-truth data provided isincorrect. In this thesis, we do not rely on
any of the systematic solutions pressnted above. Instead, we try to develop ad hoc
methods that med our current classi cation neecs.

The seoond datase usedin the evaluation process in Part |l has beencollected
on the link conneding an operational university campus network at the AGH Uni-
versity of Science and Tednology in Cracow to the Intermet. We have manually
gererated some network att adks by the useof common attacking programsavailable
in BackTradk linux security distribution [71] against savers s& up egecially for this
purpose. Thetrac hasbeen captured on the border router that monitors padets
gererated in the cntrolled part of the network. The methodology is reliable in
obtaining the ground-truth data, but, in addition, it enables us to take advantage
of rich badkground trac generated by students including recent p2p applications
aswell as standard sevices like web, ftp, or mail.

In Part Ill, we had to face even more dallenging tasks, namely, generating
and labeling Skype service ows. Manual gereration of each service separately in
a closed laboratory environment enabled us to eectively obtain the ground-truth
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information. It wasparticularly di cult dueto the p2p nature of Skypereailtingin
spreadng serviceson several TCP connedions. Another challenge wasto manually
distinguish between service ows and the rresponding signaling Skypetra c.
To edablishthe ground truth in the third part of this thesis, we have developed
a simple Domain Name System Class er (DNSC) to extract encrypted application
owsaccoding totheir domain names Moresped cally, DNSC matcheshostnames
to signatures of well known applications, such as opera in case of Opera or twitter,
twttr in case of Twitter. The solution preserts the number of constraints like
a rather limited classic ation scope. For example, we cannot label Skype ows,
becawse in gereral, we are not able to convert IP addresse to domain names.
On the other hand, if the mapping betweenan IP address and a domain name is
possble, the method can classfy ows with a very high cond ence level.

3.8 Criteria for Classi cat ion Perform ance

To evaluate any classi cation method we needto den e criteria for classi c ation
performance In this sed¢ion we discussthe metrics we useto quantify the perfor-
mance of our class ers, namdy the False Postive Rate (FPR), the True Postive
Rate (TPR), which is also known as Reaall, and Precision. They are den ed as
follows:

FP
TP
TPR = Recal = —5—— (3.2)
TP
Precision = TP+ EP (3.3)

The following metrics are built upon the concept of True Postives (TPs), True
Negatives(TNs), False Posttives, (FPs), and False Negatives (FNs). Thesenotions
are often usedin anomaly detedion and trac classi cation where each object is
placed into one of several classe.

Togivethereaderintuition abou t he statistical metricsto be used in thisthesis,
let us make an analogy. Supposewe want t o make a blind test of beer recogrition
to test the knowledge of beer acomording to the brewing process We classfy them
into two categories, i.e., either lage or ale. We sdect a s of 100 beas|60 of
theseare lagers, whereas40 represent ale. Let us assume that you have class ed
70 bees as being lagers. Actually, 50 of these are lagers, which correpond to the
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number of True Podtives but 20 are ales, which represent t he number of False
Posttives. Moreover, you categoiize 30 beas as ales Of thes, 10 represent in
fact the lager type, whereas20 of them are indead ales Let us focus on the lage
type. True Postive Rate (or Recal) is the number of beeas correctly categorized
as lager divided by the total number of bees that are actually lagasly ou have
TPR = Recall = 5050+ 10) = 0:833. Moreover, False Positive Rate isthe number
of falsely class ed beers asthe lagertype to the total number of non-lage beers,
FPR = 20=(20+ 20) = 0:5. A complementary measire to Recall is Predsion, that
is the number of correctly class ed lager beers to all beers classi ed asthe lager
type, thus, Precision = 50=(50+ 20) = 0:714.

To asses the performance of the proposel classi cation methods in the second
and fourth part of the thesis we use True Postive and False Positive Rates as clas
si cation metrics, whereasin Part 11l we use Precision, Recall, and F-M easure as
classi c ation metrics. F-M easure, which combinesPrecision and Recall, is de ned
as:

2 Precision Recal

F-M easure = — ; 4
Precision + Recall (34)

For more speci ¢ examples pleaserefer to the repective sections desaibing the
criteria for classi cation performance of eac proposeal method.

3.9 Summary

So far, we have introduced some badkground information on trac class c a-
tion important to understand methodologies proposed in this thesis. In Table 6.1,
we present t he summary of the discussed issuesaccording to the further desribed
solutions. In the remaining parts of the theds, we rst proposean acairate sam-
pling scheme for defeating SYN ooding attadks and TCP portscans, while in the
two following parts we propose two frameworks for classifying application ows in
encrypted trac .
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Table 3.1: Summary of trac classi cation isales acoording to proposed so-

lutions

Research area

Trac class cation

Sub-domain Application class cation Intrusion detection
Classfying Classfying A sanmpling scheme
Proposal solutions savice ows TLS/SSL for detecting
in the encrypted encrypted SYN o0 oding attacks
Skypetrac application ows and portscans
Class c ation goals Application Application Category
Hybrid: header- Header-basel Header-baseal
Class c ation (L7 protocol (L7 protocol (L2-L4 protocol
approaces header) & ow heacer) heacers)
feature-based
SupervisedML: SupervisedML: Anomaly-based:
SPID algorithm K-L Div. & Rate limiting
Methods basedon Markov Chain & method
Kullback-Leibler Naive Bayes
Divergerce
Padket size, Messagetypes Rate of TCP SYN
direction, byte and timestamps to ACK seggmerts
Features frequendes, from a TLS/S SL
byte pairs sesdon header
reoccurring, etc.
Manually University University
Ground truth/ gererated ows campus campus datasés
datasets in a closed datasets pre- with manually
laboratory labeled with gererated attacks
ernvironment DNSC class er
Performance True Positive and | Precision, Recal, True Positive and
Metrics False Positive and F-Measire False Positive

Rates

Rates
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Distributed Denial-of-Service (DD 0S) attadks and portscanactivity strongly in-
uence Internet searity. According to a NANO G report [72], the major cause of
denial of savice attadks is TCP SYN ooding that consists of sending many SYN
sgments from a large number of compromised computers. It prevents victim ma-
chines or even whole subnetworks from o ering a saviceto their legitimate users.
A portscan activity is usually a preaursor for an intrusion attempt|a compromised
computer sends multi ple SYN segments to probe other hogs for open portsto gain
control over more computers that bemme potertial attadkers. SYN ooding and
portscans di er in terms of intensity, behavior, and security threats sousually they
are handled independently. However, both typesoftrac exploit theinherent asym-
metry in the TCP threeway handshake mechanism and the fact that the victim
cannot authenticate TCP SYN seymerts it receives. As a result, malicious padkets
can easly read the victim without its approval.

Among various defensemecanisms SYN o oding detection mechanisms placed
in border routers have recived much attertion in recent literature [42, 43, 44, 73,
74). All these methods take advantage of the relationship between TCP control
sggments respongble for connedion establishment and release. However, they all
may fail when routerssampletra cby inspedingonly somepadkets. E ci enttrac
monitoring requiresadvanced sampling tedniquesto limit t he volume of inspected
data. Sampling consists of partial observation of the network tra c and drawing
conclusions about t he whole behavior of the system. Detecting DDoS attacks and
portscans beamesmore di cult when routers sample padets.
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4.1 Contribut ions of Part 1l

In this part, we propose a novel and scalable sampling detection scheme of high-
volume malicioustra ¢ composedof SYN ooding attadks and low-volume portscan
activity. The stheme examinesTCP sggmertsto nd at leastone of multiple ACK
sgments coming from the sewer. In this case it condudes that the connection
was succesdully edablished soits opening SYN segment was not a part of a SYN

ooding attadk or portscan activity. This principle is particularly suitable when
routers sampe padkets wit h very low rates We combine the proposed method with
arate limiting schemethat controlstra c rates and compare with threeother rep-
reenative detection methods. We show that our method achieves a high attadk
detedion rate (True Positive Rate). In comparisonwith existing methods, we sig-
ni cartly reducethe FalsePositive Rate, i.e., when legiti mate padets are dassi ed
as malicious ones.

We also study the impact of threebasic padket sampling tedniques proposed by
PSAMP IETF working group [75] on our detection scheme. The result s reveal that
even the simpleg and the mog commonly used samping tednique| systematic
sanpling also known as deterministic sanpling [76], performs fairly well under low
sanpling rates when combined with our detedion and rate limiting method. Unlike
some other proposak that usednetwork simulations or experiments on obsolete data
sdas with outdated badkground tra c, we validate our schemeon two recert data
sds of network traces captured during real network attadks.

4.2 Relevant Publ ications for Part Il

[45] Maciej Korczynski, Lucjan Janowski, and Andrzg Duda. An Accurate Sam-
pling Schemefor Detecting SYN Flooding Att adks and Portscans 2011 1EEE
I nter national Conference on Communications (1CC'11), pagesl1{5, June 2011

[77] Maciej Korczynski and Lucjan Janowski. Implementation of The Algorithm
to Detect and Prevent Network Attacks Based on Rate Limiting Method.
Conference on Next Generation Services and Networks - the Technical Aspeds,
Application and Market, November 2010

[78] Gilles Berger-Sabbatel, Maciej Korczynski, and Andrzej Duda. Architecture
of a Platform for Malware Analysis and Con nement. 3rd INDECT/I EEE
International Conference on Multimedia Communications, May 2010

[79] Karol Adamski, Maciej Korczynski, and Lucjan Janowski. Trace2How. 3rd
NMRG Workshop on Net ow/I PFIX Usage in Network Managament, 2010
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5.1 Analyzing TCP Connecti ons

Analyzing TCP connedionsis oneof the mos important issuesto addressin the
cas of SYN o0 oding attacks and portscans To open a connection, a client serds
an initial SYN segment. Upon its reception, the server allocates some resources
in the badklog queue and replieswith a SYN/A CK segmert. Finally, the dient
returns an ACK seymert (further called Client ACK) to complete the three-way
handshake. Then, communication goes on until the client or the saver sends a
sggment with the FIN ag set, a RST segmert, or the connedion timesout. The
potertial for exploiting this behavior for denial of sewiceliesin the eary allocation
of the sever resources. During aTCP SYN ooding attad, the attacker generates
multiple SYN requests without serding the Client ACK to complete the connection
egablishment. The requests can quickly exhaud t he sewver memotry so it cannot
acept more incoming connection requeds.

SYN sanning is fairly similar to TCP SYN o0 oding attadks: an attading
computer triesto idertify vulnerable hosts by serding multiple TCP SYN segments.
If a port isopen, the sever responds with a SYN-ACK segment, the port scanner
completes the threeway handshake and immediately closesthe connection with a
RST seggmert.

Several authors propose intereding detection methods that can operate in bor-
der routers to detect attadks and block them near their sources[42, 43, 44, 73, 74].
They take advantage of the relationships between the TCP control segmeits. the
appearance of a SYN segnent impliesfurther SYN/A CK, Client ACK, and FIN or
RST segnents. However, if wewant t o apply sampling at border routers of Intranets
or parts of operator networks for improved monitoring e c iency, consdering only
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a small part of packets may degrade the detedion capadty of all existing methods,
becawselow probability of sampling essential control segmentsis fairly low. For in-
stance, without sampling, the ratio between SYN/A CK and Client ACK segments
should be around 1 for regular trac while it may be di er ent when routers use
high samping rates. Becauseof this samging e ect, the existing methods realt in
poor detection performance especially with regect to the False Posttive Rate.

5.2 Sampling Techniques

We oondder three badc and most commonly usal count-based samging tedt-
nigues systematic, random 1-out-of-N, and uniform probabilistic sampling (cf. Fig-
ure 5.1) proposea by the PSAMP IETF working group [75] and thoroughly investi-
gated in the literature [80]. They present t he advantage of simple implementation
with low CPU and memory requiremernts.

Systematic sampling takes every N-th padet, whereasrandom 1-out-of-N sam-
pling randomly chooses onepadket in every bucket of sizeN. Finally, uniform proba-
bilistic samging analyzes every padket with the samesmall probabhility. Systematic
sanpling, also known as deterministic sampling, is usually usedin current network
devices one example being the Cisco Net o w protocol [76].

Some previouswork addressedthe problem of how sampling techniquesin u ence
the anomaly detection proces [81]. The authors focused on portscananomalies and
evaluated some representative anomaly detedion tecniques. Later, they extended
this work and examined various kinds of sanpling methods with regect to volume
and sanning anomalies[82]. They concluded that padket samging can introduce
a fundamental bias by changing tra c features and they pointed out the need for
better measirement t echniques. Other authors consdered the impact of samging
methods on various detection metrics examined on traceswith TCP SYN ooding
attacks [80]. Their results reveal that systematic samging does not perform well
under low sampling rates when the detection processdepends on speci ¢ padket
characteristicslike TCP ags. Our detection scheme also avercomesthe limitation of
systematic sampling and it becomes asappropriate method asother more enhanced
sanpling techniques
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6.1 Principles of the Detection Scheme

To overcome the limitations of methods that match pairs of TCP cortrol seg-
ments, we propose a novel method not limited to the analysis of the threeway
handshake or connection termination. To make it insensitive to sampling, we pro-
poseto nd at leastone of multiple ACK segmeants coming from the server instead
of looking for a single cortrol segment like SYN/A CK, Client ACK, FIN, or RST.
In other words, to deted legitimate established connections, we take advantage of
the fact that all sggments originated from the server with the ACK ag sd on and
the SYN ag set o indicate a succesdully established connection. Obviously, when
we sanple padkets, the probability that the sanmpled padket contains one of multiple
ACK semerts coming from the server is much more greater than when we try to
deted a SYN-SYN/A CK pair. This approach deaeases the False Postive Rate
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and does not in u ence the True Positive Rate, because in the caseof SYN o od-
ing attadks aswell as portsaans, there are almost no correspnding ACK segrrents
coming from the sewer. Finally, it isimpossble for the attadker to avoid detection
by spoo ng cortrol segments.

The proposal schemeis placed in a border router that monitors packets gerer-
ated in the cortrolled part of the network (e.g. an Intranet or an enterprise LAN)
to con ne the possible malicious activity close to the source of an attack. It is
composed of three modules: the rst one validates outgoing TCP segments, the
second one processes corregponding cortrol segments, while the third one changes
the packet lter list if needed

We combine the method with a rate limiting scheme If thetrac rateisless
than or equal to a prede ned rate for a given IP address it is allowed to passthe

Iter of outgoing tra c , whereastra c that exceedstherateis dropped or delayed.

We provide a detailed desaiption of the proposeddefense scheme below.

6.1.1 TCP History Check

For each sampled padket, we extract its source and degination IP address and
placethemin the SourcelP List (SIPL) and the Destination IP List (DIPL), respec
tively. We also extract other information such as timegamps, seqience numbers,
and ACK seguence numbers. When the router samples any outgoing TCP SYN
sggment, the module cheds if a timeou has elapsed. Depending on the result, it
either resds the source and destination IP lists and allows the segmernt t o pass or
it increases requed counter Rg¢ correponding to the particular source IP addres
by a posgtive intege. If there are more unadknowledged SYN segments originating
from the sped ¢ source|P address and Rgc > RT® | then this module decides that
the segments are parts of portsan activity and insets the source IP address in
the | ter blacklist. Moreover, the module increaesrequed counter Rys; by a posk
tive integer for a particular destination IP address. If Ryst > RS, it mears that
there is an excessve number of connections to the destination address Then, as
this behavior may indicate host scanactivity or a SYN ooding attad, the module
updatesthe Iter blacklist to block padkets that follow.

6.1.2 TCP Validation Check

The goal of this module is to overcome the problem of losing someusedl in-
formation because of samging. It analyzes TCP corntrol segrents to determine
whether the threeway handshake was successully completed. Any incoming seg-
ment from the saver side with the ACK ag set and SYN ag disabled indicates
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Table 6.1: Summary of pacet traces

Trace Attad ratio in padcets/sec (%)
SYN o oding 4000 padkets/sec (20%)
Host scan 120 padkets/sec (9%)
Network scan 80 packets/sec (5%)
Clearl 0 packets/sec
Clear2 0 padkets/sec

that the particular connection has been successfully edablished. In this case,the
module decreasesthe Rg¢ (Rgst) counter, because the connection becomes legiti-
mate. Consequently, the requirement Rgrc > RIZ (Rgst > R{gX) might not be
valid any more, so the module will evertually update the packet Iter blaclist to
permit further outgoing TCP requeds from/t o the speci ed IP address

6.1.3 Filtering

This module appliesall changesto the Access Control List (ACL) in the border
router so that it will discard all malicious segmerts.

6.2 Evaluation Result s

To evaluate the method and compare it with the previouswork, we have devel-
oped a prototype in the Matlab environment. We use the open source TracesHay
program [83] to read tracesand to diredly put the required data into Matlab.

6.2.1 Dataset Description

We have validated our scheme by means of tracedriven simulations on two data
sds: the rst traces were gathered on an operational university campus network
at the National Tednical University of Athens (NTUA) with an averagetrac of
70-80Mbits/secand 20000packets/sec It contains a Distributed Denial of Service
attack (TCP SYN o oding attadk) captured on May 21, 2003 against a single hog
insidethe NT UA campus. The secord s& hasbeen collected on the link conneding
an operational university campus network at the AGH University of Science and
Tednology in Cracow with a limit of 45 Mbits/s for incoming and 22 Mbits/s for
outgoing trac. In the evaluation presrnted in this thesis, we have usal set of four
tracescollected on March 24, 2010containing hog scans and port scars originated
from the campus network as well as padket traces without malicious activity (cf.
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Table 6.1). Moreover, traces cortain rich badkground tra c including recent p2p
applications as well as standard sevices like web, ftp, or mail. Note that all traces
are bidirectional. We wmndgder them as a meaningful sea of traces|i f the data set
is not recert, we cannot trust evaluation results espedally when we wmnsder the
FalsePostive Rate because of unrealistic background tra c (new applications have
di erenttrac characteristics from old ones). Some previous work proposel other
detedion algorithms [84, 85|, unfortunately the evaluation process uses outdated
data sets.

6.2.2 Criteria for Detection Performance

We consider two meaningful metrics to evaluate the performance of detection
methods: the True Posttive Rate (TPR) and the False Postive Rate (FPR) (cf.
Eg. 3.1 and 3.2). Such rates are usually presented as the Receiver Operating
Characteristics (ROC) curve by plotting TPR as a function of FPR. As attadk
detedion isaBooleanaction, the ROC curveis uselll for network operators, because
it indicates how to nd the right tradeo between the False Postive and True
Posttive Rates. Howewer, in our evaluation, we have separated both values and
presented them as a function of the sampling rate, because the evaluation is also
basedon tracesthat do not contain malicious activity.

6.2.3 Comparing with Existing Detection Schemes

To evaluate our scheme we have compared it with other threerepresntative
detedion schemesthat leverage TCP relationships: SYN-SYN/A CK, SYN-FIN,
and SYN-Client ACK. The key point of schemes basal on matching SYN-SYN/A CK
and SYN-Client ACK pairsisthe needof nd ing the corresponding SYN/A CK or
Client ACK segment after the rst SYN segment. The time interval between them
is the RTT (Round Trip Time), usually less than 500ms for more than 90% of
connections. Therefore, the methods have to inspect all control segments during
at leastthis interval to condude that the connedion was successllly edablished.
The detection methods based on matching SYN-FIN (or RST) pairs, simply waits
for the mrregponding FIN (or RST) segrert.

6.2.4 Calibration Process

We had to face the problem of setting the right rate limiting threstolds, i.e.,
maximum valuesof the request counters corregponding to aregular trac pattern.
We have alibrated them for every examined tracein order to achieve a high TPR
with no FPs regardless of the detedion method when we analyze all padets.
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Table 6.2: Rate limiting thresholds obtained during the calibration process
for particular traces

Trace RIY (packets) R (packets)
SYN o oding 200 1300
Host scan 300 100
Network scan 400 240
Clearl 50 170
Clear2 120 90

The alibrated values (cf. Table 6.2) re e ct the relation between outgoing SYNs
per destination and per souce and corresponding control padkets (SYN/A CK,
Client ACK, FIN). In long-term reguar conditions, the TCP semartics requires
a one-to-one match between TCP requests and control segments. Nevertheless
in reality there is always quite huge di er ence between the number of SYNs and
SYN/A CK, Client ACK or FIN padkets. Nowadays, the major cause of this dif-
ference is the legitimate p2p tra c that initiatesTCP connedionsto unreachable
seeds. We have empirically found that the rate limiting thresholds expressé in
padkets are directly proportional to the samging rate, which alleviates the problem
of losing potertially useiul data during the sampling process

6.2.5 Inuence of the Sampling Process on Di er ent Detection
Schemes

In our experiments, we have ewvaluated the in u ence of uniform probabilistic
sampling on the proposed method and compared it with other three schemes We
have deddedto choosethis particular sampling method, because it is claimedto be
more eective in the proces of padket seledion compared to systematic samping
[80].

We have repeated all simulations to obtain 95% con dence intervals computed
acaording to the bootstrap method [86].

As shown in Figure 6.1, all methods presert approximately the same high TPR
and very low FPR in cae of TCP SYN ooding attacks. Similar results for all four
methods are due to seting high rate thresholds corregponding to regular trac for
this particular trace As we can obsave, TPR curvesof all deteding schemesare
similar until 0.008% when samging processincreages randomness in the reailts.
As far as FPR is concemed, we can seethat SYN-SYN/A CK, SYN-FIN, SYN-
Client ACK methods deviate from our scheme, but di e rencesare insigni ¢ ant. For
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6.3 Related Work

We can observe that our reaults overcome the problems consdered in the lit er-
ature [80] in which the authors evaluated the impact of the same three sampling
methods on anomaly detection techniques They conclude that methods that rely
on systematic samping are the worst choice for the detedion of attads based on
ceatain TCP control ags like SYN or FIN, becuse such segments are not evenly
distributed acosstrac . Our stheme alleviates the problem of sampling SYN-
SYN/A CK, SYN-FIN and SYN-Client ACK pairs and proposes a novel solution
basedon considering ACK segments.

To detect and mitigate scanning activity, SYN ooding, and DDoS attadks,
several authors proposed various methods [87, 88, 89, 90]. The end-hog method
basedon SYN cookiesisthe mos commonly usedtednique to protect against SYN

ooding attadks [91]. Nevertheless SYN cookies are not able to encode all TCP
options, in particular the window scale and seledive adknowledgements that are
widely supported and serve to signi cantly improve TCP performance Moreover,
the method does not overcome the problem of bandwidth consumption in case
of high-volume TCP SYN attacks. Consequently, we have focused on SYN o od
methods located in border routers [42, 43, 44, 73, 74] and we desgned a novel
scheme insensitive to sampling.

6.4 Conclusion

We have proposed a novel scheme for detecting TCP SYN ooding attadks
and portscans that o ers good performance in the caseof sampling. The scheme
considers TCP connectionsaslegitimateif it samples one of multiple ACK segmerts
(with disabed SYN ag) coming from theseaver. Thisdi ersfrom existing methods
basedon pair matching of control sggmernts SYN/A CK, FIN (RST) or Client ACK
etc. Our tracebasedsimulations show that unlike other techniques, the proposed
method signi cantly decreasgesthe False Podtive Rate under a sanpling process.
Moreover, the results reveal that our method alleviatesthe problem of losng some
information when systematic sampling is used. The e ectivenessof the preserted
method only relies on the samging rate and not on the type of a sampling method.
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Accuratetrac iderti cation and class cation are es®rtial for proper network
con guration and security monitoring. Application-layer encryption can however
bypassrestrictions st by network con guration and security checks. Several ap-
plication protocols adopted the Secure Socket Layer (SSL) encryption to proted
the cond ertiality of communications, which raisesnew challenges with regect to
trac classi cation and malware detection.

In this chapter, we focus on Skype asan interesting example of encryptedtrac
and provide a method for identifying di er ent encrypted TCP Skype ows tun-
neled over SSL|w e want t o discriminate between voice alls, video conferencing,
skypeCQut calls, chat, and | e sharing. Previous papers on Skype oconcertrated on
its architecture and the authentication phase [33, 31, 34], on the mechanisms for

rewall and NAT traversal [92] aswell ason charaderizingtrac streamsgererated
by VolP calls and Skype signaling [51, 35]. Bonglio et al. proposel iderti c ation
methods for encrypted UDP Skypetra c¢[18], but no work hastackledthe problem
of how to classfy encrypted TCP ows generated by all Skype savices.

Skype exempli esthe problem of identifying encrypted o ws, becauseit multi-
plexessewral servicesusing the sameports: VolIP calls, video conferencing, instant
messaging, or le trander. A network administrator may assign a higher priority
to VoIP calls, but other ows may also benet in an illegitimate way from a higher
priority if we cannot distinguish them from VolIP calls.

7.1 Contribut ions of Part lll

We propose a classi cation meth od for Skype encrypted trac basedonthe Sta-
tistical Protocol IDenti cation (SPID) [22] that analyzes statistical values of ow
and application layer data. We propose an appropriate set of attribute metersto de-
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ted encrypted TCP Skypetra c and identify its sevice ows. We consider a very
spedal caseof Skypetrac that is, in addition to proprietary encryption, tunneled
over S4.. Our method involvesthreephases with progressiveidenti cation: the r st
classi c ation phaseeary reveals Skype tra c , while the secord one providesthe
preliminary Skype owsidenti cation: the distinction between voicev ideocommu-
nication, chat, voice calls towards phones using skypeQut, and le sharing. The

nal phase identi e s Skype ows in detail: voice calls, video and voice communi-
cation (denoted later asjust video), chat service, skypeQut calls, | e upload and
download. To sekct theright attribute meters for ead phase we applied a meth od
called forward selection [55] that evaluates how a given attribute meter improves
classi c ation performance and promotesitto thetrac modelif itsin uenceis sig-
ni cant. Forward seledion usesthe Analysis of Variance (ANOVA) [59]. We have
evaluated our classi cation method on a representative dataset to show excdlent
performancein terms of Predsion and Recal.

7.2 Relevant Publ ications for Part Il

[23] Madej Korczynski and Andrzej Duda. Classfying Service Flows in the En-
crypted Skype Tra c. 2012 |EEE International Conference on Communica-
tions (ICC'12), pages 1{5, June 2012.



Chapter 8
Issues in the Analysis of Skyp e
Trac

Skypetra c preseitsa major challengefor detection and class c ation, because
of proprietary software, seweral internal obfuscation mechanisms, and a complex
connection protocol desgnedfor bypassing rewallsand establishing communication
regamdless of network policies.

Skypedi er sfrom other VoIP applications, becauseit relieson a p2p infrastruc-
ture while other applications use the traditional client-sever model. Skype nodes
include dients (ordinary nodes), supemodes and severs for updates and autherti-
cation. An ordinary node with a public IP address suc ient computing resouces
and network bandwidth may becomea supernode. Supernodesmaintain an overlay
network, while ordinary nodes edablish connectionswith a smal number of supern-
odes. Authentication servers store the use acoount information. A Skype dient
communicates with the authentication saver and another ordinary node in an in-
direct way via supernodesthat relay padkets. Skype can multiplex di erent service

ows such as voice alls to another Skype node, skypeOut calls to phones, video
conferencing, chat, le upload and download. Our goalisto deted and classify the
sagvice owsin Skypetra c.

Even if the maintenance of the supernode list is possble through someactive
and passve methods [31], the assaiated information may only be useul in revealing
Skype trac and not in deteding Skype service ows. We cannot usetraditional
port-based ow identi cation methods, because Skype randomly sdects ports and
switches to port 80 (HT TP) or 443 (HTTP over SSL) if it fails to establish a
connection on chosen ports.

Another feature of the Skype design is the possibility of using both TCP and
UDP asatrangort protocol. Skype uses TCP to establish a connection and thenit
canswitch to UDP for both signaling and reguar communication. Onceit makesthe
initial connection, it can interchangealdy use TCP or UDP deperding on network
redrictions.

Skypeencryptsitstrac with the proprietary encryption tecnologiesto proted
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communications exchangedbetweenit s cliernts and severs. It uses several encryption
algorithms [93], which makestrac class cation a challenging task. Its srvers
usethe strong 256-hbt Advanced Encryption Standard (AES), the supernodesand
clients use three di erent types of Rivest Cipher 4 (RC4) encryption. Finally,
the dients also use AES-256 on top of RC4 algorithm to protect from potential
eavesdropping. Skype enttirely encrypts TCP trac , but someinformation in the
UDP payload is not encrypted so a part of the Skype messags encapsulated in
UDP can be obtained and used for idernti cation [18].

We propose an accurate method for classi cation of encrypted TCP Skype sa-
vice owstunneledover SS.. It isa hybrid method combiningtrac ow metering
with Deep Padket Inspedion (DPI) elements.
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9.1.1 Classica tion Based on SPID

We build our method upon SPID (Statistical Protocol IDerti c ation) [22] (cf.
Figure9.1). It isbasedontra c modes that contain a set of attribute ngerprints
represented as probability distributions They are created through frequency anal-
ysis of tra ¢ properties called attribute meters of application layer data or ow
features. An example of such an attribute meter is byte frequency that measues
the frequengy at which all of the possible 256 values occur in a padket. Other at-
tribute meters de ned later in Table 9.1 and 9.2 include for instance byte o set,
byte re-occurring, direction change and padket size

As illustrated in Figure 9.1, SPID operatesin three steps. First, padets are
classied into bi-diredional ows. All connedions are repreented as 5-tuples ac-
cording to the souce IP address source port, destination IP address, degination
port, and transport layer protocol. However, only padkets carrying data are sig-
ni cart, because the analysis is basal on both the application layer data and ow
features. Then, each ow isanalyzedin terms of attribute meters to obtain a collec
tion of attribute n gemrints. Finally, the obtained attribute ngerprints are usel
either in trac model gereration or in trac class c ation.

To illustrate the processof n germrint creation, condgder an example of the
byte frequency attribute meter computed on the rst 5 bytes of the SSL Server
Hello packet, a part of the S handshake protocol. The rst 3 bytes refer to
the messagetype (0x16) and the SSL version (0x03 01), while the last two bytes
corregpond to the size of the remaining part of the SS_ record (0x00 4a). Each time
we obsave a particular value, its counter is incremented. In the example, all ve
counters referring to the v e valueswill be incremented. Then, SPID maintains a
probability vector|t henormalized counter vedor with all elements summing up to
one.

At the initial training phase,the method createstra ¢ modds|at tribute n-
germrints represantative for the tra ¢ we want t o detect. During the class ¢ ation
phase, the method computesattribute ngerprintsonthe owsto classify and com-
pares them with trac modes by means of the Kullbadk-Leibler (K-L) divergence
[28]:

, X P (x)
D(PjjQ) = K-L(P;Q) =  P(X)logp~ (9.1)
X Q(x)

The K-L divergerceis a measire of the di erence between two probability dis-
tributions P(x) and Q(x). P(x) representsthedistribution of a particular attribute
of an observed ow and Q(x) is the distribution corregponding to a known trac
model. Class cation congsts of comparing P (x) with all known trac models and
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sdecting the protocol wit h the smallest averagedivergence D (PjjQ) and lower than
a given threstold. We nedal to correctly set the divergence threstold to deaease
the False Posttive Rate for known tra ¢ models|jw e only take into consideration
the K-L divergence average valuesbelow the threshold.

Figure 9.2 presents a simpli e d process of the proposed class cation method. In
the r st phase, it detects Skypetrac aftera TCP threeway handshake based on
the rst v e padkets of the connection by considering attribute meters, the majority
of which re eds application level data. Then, it changesthe set of attribute meters
to both padket independent and application level data featuresto detect sewice

ows in the Skype tra c: voicéevideo, skypeQut, chat, and | e trander. This
phase requiresa larger number of padketsto analyzeto be e ective: our calibration
sds this value to 450 padkets. Finally, the method considers more padckets (the
threshold is set to 760) to further distinguish between voice and video ows, and
between | e upload and download.

9.1.2 Attribut e Met ers for Skyp e

In this subsedion, we present t he set of attribute meters de ned for classifying
Skypetrac (cf. Table 9.1 and 9.2) with notation preented in Table 9.3.

" byte frequency: in eat padket it measures and returnsthefrequency of indi-
vidual bytesin the payload. Encrypted data seensto have equally distributed
byte frequencies whereasthe plain text may exhibit di er ent distributions
The S protocol, in the r st bytes of the transmitted padkets, tends to pro-
vide some unenaypted information related to the sessin, such as the S
version, messagetype, compression method sekcted by the server, etc.

acti on-reaction of rst bytes: it creates hash valuesbased on the rst 3
bytes of each padket that was sent in a di e rent diredion than the previous
one. It is sometimes better to analyze padkets st alternately in di er ent
directionsinstead of looking at all padkets, becawsewe can easly analyzethe
requestresponse phase between a client and a sever.

byte value os et hash: it combinesindividual byte valuesin each padet
with the o set at which the bytes are postioned. The meter condders up
to 32 bytesof the 4 rst padkets. The SSL is one of the protocols that use
several positionsin particular padkets (e.g. in Client Hello or Server Hello
messages) As aresult, the combination of bytes with their postions provides
some additional information with regect to the byte frequency.
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Table 9.1: De nition of attribute meters used in class ¢ ation
Attribute meter De nition
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P, P
my= L G hixi)

rst 4 pacets byte re- | M 4 : f(h;pn)g, 8uc=16 :h: (xl;d) ! h(x!;d), pn = eftn—,
occurring distance with
b _P4 Pgy _

yte Mh = =1 j=1 hx d))

rst 4 packets rst 16 | M s:f(hipn)g, h:(xj;xj.) ! h(X};Xf.1), pn = PTE-,
byte pairs

M = P4 P o
h= =1 j=1 h(x]xj,)
rst 4 ordered direction | M g : f(f;ps)g, f : (i; s(x');dir (x')) I f(i; s(x'); dir (x')),

padket size

Py

Pr = lmr;T y ME = o1 (s (x)dir (x1))

rst paket per direc
tion rst N byte nibbles

M 7 f(f;pr)g, 8igr 1y1g : f o (nib(x{");]; dir (x1))
L f (nib(x); ] dir (x1)),

— pMmif — 8
Pr= T M= =1 f (nib(x ) dir (x1)




66

Chapter 9. Design and Evaluati on

Table 9.2: De nition of attribute meters usal in class c ation - cont.

Attribute meter De nition
direction packet size | Mg:f(f;pr)g, f 1 (s(x);dir (x1) ! f(s(x');dir(x)), pr = BT,
distribution b
ms = .sg) £ (s(x):dir (x1))
byte pairs reoccurring | M o : f(f;pr)o,
count
Byi—yirr o (xlidir (x]);dir ) 1 f (x];dir (x]); dir (")),
J J
= pM _PsPa
i LU f 0 sdir ()l (™)

rst 4 packets byte reoccurring distance with byte: it createsa short
hash value (usually a 4-bit represertation) and combinesit with the distance
between the two occurrences. The measuwemen deteds the bytesthat oc-
curred more than once within 16 previous bytes. Originally, it wascreated to
identify banners in plain text padkets like eg. TTin HTTP GET and POST
messages,but it alsoappliesto the cas of the ercrypted or the tunneled SSL

cornert.

rst 4 packets

rst 16 byte pairs: it combines neighboring bytesin a

16-hbit value and corverts to a 8 bit hash value (the size is determined by the
ngerprint length). It analyzes only application layer data regardless of the
ow information, i.e. padket size, diredions, or inter-arrival times The meter
indicates that there are somespeci ¢, not random two-byte conmbinations like

eg.
Hello messagesent to the saver.

version of the padket sizdlit

of the exact value. Measuremerts are separately done for ead of four

list compresson methods supported by the client in the S Client

rst 4 ordered dir ection packet size: the meter returns the compressed
represerntsarangein which the padet liesinstead

rst

padkets in connedion and the returned value is assaiated with the padet
direction and the order number. It isa ow baseal attribute aeated for early

trac reagnition.
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Table 9.3: Notation

M :f(k;pk)g { attribute meter
k=0;1,2;:::;255{ random variable of an attribute meter
my { attribute meter counter
px { probability distribution of an attribute meter (corresponds to Q(x) in tra ¢
model generation and P(x) in trac class c(ation)

{ indicator function; :X ! f0;1g; ,i = ! !fX - Xi

] 0 ifX 6 xj!

h { hashfunction, h = 0;1;2;:::;255
f { compressing function, f = 0;1;2;:::;255
x| { packet i
x| { bytej in pacet i
é!(m).{ bit m in bytej in padket i

i Xx'$ x { all packetsin a TCP sesion
y' { packet i, Z' { packet sert in adi erert diredion thany'
x'; { rstj bytesin packet i
d { distance between two identical bytes; if x; = xj! q) d;0<d<j
s(x) { size of x; amount of padketsin a TCP sesson
s(x') { size of packet x' in bytes
dir { padket direction
nib: XJ! $ Xj! (m2(1:::8)); XJ! (m2(1:::4)) XOR Xj! (m2(5::8) ) I’]ib(XJ!)

rst packet per direction rst N byte nibbles: it analyzes the rst
padket in ead diredion and inspeds its rst few bytesdepending onthe n-
gemrint length (8 bytesfor a ngerprint length of 256). It provides a measue
combining the padket direction, byte o set, and a compad represatation of
the byte value so-alled nible, (it dividesa byte into two 4-bit groups, per-
forms an XOR calculation, and returns the resulting 4-bit value). The rst
padket in eat diredion and the rst few bytescorreponding to thes padcets
say a lot about t he application layer protocol and might also provide some
hidden information of the underlying sewice

dir ection packet size distribution: this attribute is very similar to the
rst 4 ordered direction padket size meter. The only di erence is that it
inspects all packets in a connedion and does not mark each measuement
with the order number of the packet in a connection. It is an example of a
ow basal attribute egecially sutable for detailed Skype class cation: it is
able to classify ows in which padket sizes per direction are di er ent, which
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enables to distinguish, for example, le upload from download.

" byte pairs reoccurring count: it detects bytesthat reoccur in the same
postion in two consecutive padkets. In addition, it takes into acoount the
direction of a given packet and its predecessor.

9.1.3 Metho dology for Attribute Met er Selecti on

Our classi cation processis based on three phasesand ead of them requires a
proper se of attribute meters. We applied a method called forward selection for
choosing attribute meters. It consists of starting with an initial attribute in the
model, trying attributes out one by one, and adopting them, if they improve the
classi c ation performance. T he sdection terminateswhen adding an attribute does
not improve the performance

We consider a set of n attribute meters x1;:::;;Xn, 2 X and a set of m Skype
seavices. We begin with a model that includes the most signi ¢ ant attribute in the
initial analysis. More precisely, we compute Precision, Recal, and F-M easure
(cf. Eg. 3.2 - 3.4) for a particular Skype sevice and for ead individual attribute
meter. The True Podtive (TP) term refers to all Skype ows that are correctly
identi ed, False Postives(FPs) refer to all owsthat were incorrectly identi ed as
Skypetrac . Finally, False Negatives (FNs) represent all o ws of Skypetrac that
were incorredly identi ed asothertrac.

We seled attribute x; 2 X with the largeg averageF -M easure de ned as

maxi X FMJ; (9.2)
x2X m a2(L:m) a
where FM ) denotesa™ obsewation of F-M easure value corresponding to x™" at-
tribute meter.

In the next step, ead of the remaining attributesxq;:::X; 1;Xj+1;::Xn 2 X is
teded for inclusion in the model. We run several F-tests (explained below) that
compare the variance of F-M easure values obtained in the preliminary seledion,
i.e. FMXi, wherea 2 (1; m), with the correspnding valuesobtained after including
ead attribute meter sgparately.

Let usfocus on a particular F-test [59] that comparesthe in uence of attribute
meter X; 2 Xi;:iXi 1;Xi+1;::Xn 2 X with the rst model basedon x; 2 X. We
examine two groups of F-M easure values FM i and F Ma’ that respectively cor-
resgpond to attribute x; and to the se of two attribute meters, i.e. x; and x;. We
ted the null hypothesi that two means of the discussal population are equal. If we
fail to reject it, the additional attribute meter does not improve the classic ation
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performance and we neal to exclude it from further condderation. To examine
thesetwo groups, we use the one-way Analysis of Variance (ANOVA) F -test [59]
that compares the variance between the groups to the variance within the groups.
The beween{groups variance is given by:

Spet = M ; (9.3)

where FM* denotes the mean of F M X values, FM denotes the overall mean of
F-M easure obsewations, i.e. FM X and F MQ‘” , m is the number of F-M easure
values for Skype savices and k is the number of groups (in the disaussal case equal
to 2). The within{group varianceis given by:

_ X (FMY FMY)?

Swit = kK m 1 (9.4)

X;a

where F M X denotesa™ obsewation correponding to each x classi ¢ ation (in the
discus=d caseto the classi cation basedon x;j and the classi cation basal on the
s of two attributesx; and Xx;).

The F -statistics is computed as:

Sbet
F = ; 95
Swit (9-3)

and it followsthe F -distr ibution withk 1,k (m 1) degreesof freedom under the
null hypothess. If the null hypothess is rejected and the averageF -M easure value
correponding to X; is lower than F-M easure related to the sa& of two attribute
meters, i.e. Xj and Xj, thenattribute x; is considered as a candidate to be included
in the model.

For each of the attribute meters, the method computes F -statistics that re eds
the contribution of attributesto the model. The mog signi c ant attribute is added
to the model, if F-statistics is above a prede ned level setto 0.1. Moreover, if
F -statistics is above 1, it isincluded in the model and conddered as a signi cart
attribute meter. The forward seledion method then computes F -statistics again
for the attribute meters still remaining outside the model and the evaluation process
repeats. Therefore, attributesare added oneby oneto the model until no remaining
attribute resutsin signi cant F -statistics .
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9.2 Evaluation Result s

We start with the description of the datasets used for training the method and
evaluating its performance. We then present t he criteria for class cation perfor-
mance and we disauss the evaluation results of the proposed method. We also
explain how we calibrate the parameters of the method (the doice of the number
of padkets to analyze during each step, the number of ows usal in the training
process, and the sdection of the right K-L threstold).

9.2.1 Dataset Description

The appropriate seledion of padket tracesconaining ground-truth information
is one of the key aspects in the training and evaluation process. It should be as
extensive as possible and should cover various environments. We have gererated
TCP Skypetrac in the following conditions:

~

various operating systems: Linux, MacOS, Windows,
wireless and wired networks,

connections within one LAN aswell as WAN connections between LANS lo-
cated in France and Poland,

di erent versions of Skype (2, 3, and 5)

To force Skype to gererate dedred ows, we have used rewall rules to block
UDP sothat all communicationsuse TCP and allowed only well-known TCP ports
sothat Skype switches to port 443.

We have used Wireshark [94] to colled padket tracesand to distinguish Skype

ows from other network trac. We have teged all Skype servicesseparately to
simplify the extraction of the desred ows and captured ows containing voice,
video, skypeQut, chat, le upload and download. We have obseved the useof the
G.729 codec for skypeQut calls and SILK _V3 for Skype-to-Kype voice communi-
cation. Skype adopts VP 7.1 codec for video communication. Overall, we gathered
479 Skype ow tracestaking more than 770 MB.

Therefore, we have divided the colleded se of ows into several groups accord-
ing to operating systems network accesstecnologies and Skype versions. For
thetrac model generation purposewe have sdeded a group of traces gererated
by MacOS over a WAN connedion between wireless LANs located in France and
Poland. We have used the remaining datasets to evaluate the dass cation mech-
anism. Our ngeprint databasewith 6 Skype sewice ow models has the size of
1.78MB in the XML format.
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Furthermore, we have gathered a separate set of traces without Skype trac
to test the disaimination of our method. It contains various typesof trac: S,
SSH, HTTP, SCP, SFTP, VolIP, BitTorrent, and standard sewices like streamng,
video conferencing, chat sevice mail, le sharing. The tracescorntain 18945 ows
of around 3GB and were gathered between Decenber 2010 and March 2011.

9.2.2 Criteria for Classica tion Performance

We use three metrics to quantify the performance of class c ation: Precision,
Recall, and F-M easure (cf. Eq. 3.3 - 3.4). F-M easure is an ewvenly weighted
combination between Predsion and Reall, which means that if the system can
for instance identify skypeOut trac with Predsion 100% (no False Postives and
Recall is 96.6% then the F-M easure is 98.2%.

9.2.3 Performance of Classi ca tion

To evaluate the proposed method, we have extended the version 0.4.6 of SPID
[95].

Our method deperds on three parameters. the amount of padkets required for
reliable trac and ow iderti c ation during each of the three steps, the K-L di-
vergerce threshold, and the number of ows usedin the training process We rst
present t he classic ation reailts for the number of padkets in each phase set to
5, 450, and 760 padkets, regectively, the K-L divergerce threshold of 1.9, and 15
training ows (we evaluate the impact of parameters further on and explain how
we have chosen their values, cf. Section 9.3).

After ead classic ation step, the dassi er decides if there are any instances
of Skype ow for further analysis. If the identi cation resut is postive, then it
continues with more detailed classi cation of Skype ows with a di erent se of
attribute meters. Otherwise, it nishesasno Skype o ws were recogrized.

The objedive of the rst classi cation phase is to eally detect encrypted TCP
Skype ows tunneled over the S protocol. The most signi cant attribute meter
chosen in the sekction processis M s (cf. Table 9.1). Two other important at-
tributesare M 7 and M g while M 3, M 4, and M 1 are less mearningful. In addition
to payload inspection attributes(M 5, M 7, M 3, M 4, and M ;), we have chosenone
typical ow basal attribute that combinesfeatures like size direction, and packet
order number (M g). Such sdection indicatesthat the rst S padkets contain
some dharacteristic values that di er from the headers of other servicesthat use
SSL (cf. Section 12.2).

Our experiments show that inspecting only the rst v e padkets cortaining the
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Table 9.4: Performance of Phasel, Early Recogrition of Skype Trac

Trac Precision % | Reall % | F-M. %
Skype 100 100 100
No Skype 100 100 100

payload is u cient to reveal Skype trac with Predsion, Recall, and F-Measue
equal to 100% (cf. Table 9.4).

Oncethemethod deteds Skypetrac, it class e stheunderlyingtype of savice
i.e. voicev ideo communication, skypeQut calls, chat, le sharing. In the second
phase, the meth od usesanother set of attribute meters (M g asthe mos important,
M ;7 asasigni cant one,andM g, M ,, and M 5 asadditional ones). The seleded s&
of attributes is composal of payload indeperdent diredion packet size distribution
attribute meter (M g) with DPI attributes(M 7, M g, M 2, and M 5).

Table 9.5: Performance of Phase?2, Classi ¢ ation of Skype Flows

Skype Service | Precision % | Recall % | F-M. %
voice/video 991 957 974
skypeQut 100 96.6 982
chat 864 100 927
le sharing 100 98.6 993

Table 9.5 shows very good reailts of classi cation after inspeding 450 pack-
ets. Howewer, this phase cannot distinguish between voice communications and
voice/video calls due to similar tra c characteristics Nevertheless, from the Qual-
ity of Service (QoS) perspective, network administrators may already give priority
to Skype voicelvi deo tra ¢ and limit Skype | e sharing ows regadlessof the
trac direction.

The objective of Phase3 isto further ren e the classi c ation of voice and video

ows aswell as | e sharing. We have applied M g asthe mog important ow based
attribute meter and DPI based M 7 as an additional one. Table 9.6 preserts the

nal results obtained after analyzing 760 padkets. We can obsewe that the resudts
are very good for most of Skype ows. We can easiy distinguish between le upload
and download baseal on the ow attribute combining the diredion with the padcket
size distribution (cf. attribute M g in Table 9.2). The dassi cation is basal on the
fact that the sizesof padkets sert from the client signi cartly di er s from the sizes
of packets srt in the opposite diredion.

Class c ation of voice and video ows performs dlightly worse, because our
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Table 9.6: Performance of Phase3, Detailed Class c ation of Skype Flows

Skype Service | Precision % | Recall % | F{M. %
voice 729 574 642
video 60.3 732 66.1

skypeQut 100 96.6 982
chat 902 974 937

le upload 100 969 984
le download 100 975 98.7

method does not capture some caracteristics of the Skype behavior (it is meart
to be applied to other classic ation problems as well). We have obseved that in
the case of Skype calls (both voice and video), the Skype dient sendstra c¢ simul-
taneouwsly through several nodes deperding on network conditions In other words,
the Skype voice or videotra c may spread on seweral TCP connections, which we
cannot capture, becawse our method considers each TCP o w sefarately.

In contrast to voice/video communication and | e sharing, we have noticed
that chat messagesand skypeOQut calls seem to be sen through a single node.
Considering chat messages we have obsewed that when an intermediary node goes
down, communication switches to another one without any interference for the
users. Thisis not surprising if we take into account a smal amount of data to serd.
For skypeOut calls, howewer, we have obsewved that the whole communication goes
through a single intermediary node and the range of relay addresesis limited.
This may come from highe reaquirements for bandwidth and computing resouces
to support high quality of calls. To sum up, in this class c ation step it was easer
to idertify thesetwo type of sewices, becausethe wholetra ¢ was sent over single

Oows.

9.3 Calibration of the Met hod

In this section, we consider the choice of the right values for the mathod param-
eters:

~ the K-L divergence threshold,
~ the number of inspected padkets per ow in ead classi ¢ ation phase,
~ the number of ows usedin the training process

Figure 9.3 shows the F-Measure for 15training o ws and for three class c ation
steps (analysis after 5, 450, and 760 padkets) deperding on the K-L divergerce
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Figure 9.3: F-Measire deperding on the K-L divergence threshold for three

classi c ation phases

threshold. Choosing an appropriate value of K-L divergercethreshold is important
becawseatoolow valueresudtsin an increasednumber of FalseNegatives,i.e. Skype

ows are incorrectly identi ed asunknown tra ¢, which deaeases the F-Measure.
If the threshold istoo high, then it may lead to multiple False Positives,i.e. other
protocols are incorrectly identi ed as Skype. As shown in Figure 9.3, a large value
of the threshold signi cantly a ects the F-Meadire. The resuts sugges that the
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Figure 9.4: F-Measure deperding on the number of inspected padkets for
threeclassic ation phases

optimal value for all three classi cation phasesis 1.9.

Figure 9.4 shows the F-Measure deperding on the number of inspected padkets
containing payload for three dassi cation phaseswith the K-L divergercethreshold
equal to 1.9 and 15training ows per trac mode. As we aan seeinthe gure, the

rst classic ation phaserequiresonly 4 padets to achieve the F{M easure equal to
100%. In the second classi cation phase the distinction betweenSkype services i.e.
voice/video, skypeOut, chat, and | e sharing, is very clear (the average F-Measue
close to 97%) after 450 packets containing payload. A slightly lower Predsion for
the chat service when the number of inspected padkets is less than 450 padkets is
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Figure 9.5: F-Measure deperding on the number of training ows for three

classic ation phases

probably due to a limited number of obseavations during the construction of the
chat trac model. De9ite the same number of training ows set up to 15 for all
trac models,i.e. voice video, chat, skypeOut, trac uploadandtra c¢ download,
the amount of data available during the aeation of the chat trac model wasthree
times lower than in other cases. Therefore, the lower Precision for chat means
that other Skype services were incorredly identi ed as chat, which reallts in a
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lower Recall for voicelv ideo as well as for le sharing, while the performance for
skypeCQut remains almost una ected dueto di erenttra c characteristics.

In the third class c ation phase, the F-Measue signi ¢ antly raises with the
number of inspected o ws up to around 700 padkets. Choosing the number of 760
reailts in the F{M easue for voice and video tra ¢ models around 65%, whereas
the acauracy of the class c ation is nearly ideal for other typesof Skypetrac .

Finally, Figure 9.5 presents the in u ence of the number of training ows on the
F{M easue valuefor three dass cation phases. We cansesthat the critical amount
of training ows essatial for identi cation of the encrypted Skype tra c is equal
to 3. Howewer, to improve classg c ation performance, we have used 15 training
sesdons for eath trac model, because the training phaseis done o line, soit does
not in uence the spedal of classi c ation.

9.4 Related Work

Much research has concerned the domain of trac classi cation during recent
years [5, 2, 3, 26, 96], howewer only a few authors focused on encrypted tra c¢
[52, 25, 33, 31] or on the class c ation of encrypted ows [97, 18, 51, 35. Some of
thesemethods were applied to the problem of Skype dassi cation and cannot be
easly extended to other identi c ation problems of encrypted tra c.

Teixeira et al. [52] extended their previous work [26] and proposed a method
basedon the size of the rst few padkets of an encrypted connedion, which enables
an early application protocol remgnition with the accuracy of more that 85%. In
our work, we make a step forward by proposing an accurate method for detecting
savice ows in encrypted Skype tra ¢ basedon varioustra ¢ ow and payload
attributes.

A recent approad focused on the detection of Skype o ws egecially voice ser-
vicetra c¢[31]. Evenif the method reailtsin high acauracy, it is not applicable to
other class c ation problems, because it makes useof ow features and node infor-
mation obtained from some passive and active measirements within the Skype p2p
network. The solution proposeal by Alshammari et al. [33] is based on a machine
leaming algorithm using ow features without taking into acoount IP addresses,
port numbers, and the payload. It is a fairly general methodology and like for us,
Skype is a teg casefor the dasg cation of encrypted trac. Howewer, it is not
sure that the method can classfy Skype ow services Another approad tries to
address the problem of identifying encrypted application layer protocols by mears
of a hybrid method that combinessignature-based and statisti cal analysis methods
[25]. The work is closdy relatedto ours, but t heir objectiveislimited to the classi -
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cation of encrypted application layer protocols, while we focus more on anin-depth
analysis of particular Skype sevices. Wright et al. tadcled the dallenging task
of identifying the languageof cornversations by using the length of encrypted VolP
padkets [97]. Even if their work di er s from our study in terms of classic ation
objectives, we believe that the condusions may remain the same, i.e. when using
ceatain trac characteristicsit is possible to extract some mearingful information
even from encrypted trac .

Bon glio et al. investigated the characteristics of tra ¢ streamsgenerated by
voice and video communications aswell asthe signaling tra ¢ gererated by Skype
[51]. Chenetal. concentrated onthe QoSlevel providedto Skype users[35]. Dueto
simple dassi cation criteria, they cannot however distinguish betweenvoice video,
and skypeCQut calls.

Finally, Bon glio et al. proposed a framework based on two complementary
tediniques [18]. The rst one detects Skypetrac n gemrints and the secord one
is basedon ow characteristics (t he padcet arrival rate and the padet size). The
authors evaluate two classiers to reveal Skype tra c¢. The r st Chi-Square Clas
si er cheds the characteristics of the message cortent after cyphering. With this
methodology, they can only distinguish between voice and skypeOut ows trans
ported over UDP based on some deterministic unencryptedbytesin Skype messages.
The second Naive Bayes Classi er checks the resenblance of the measired tra ¢
with expeded stochastic characteristics Despite the fact t hat the framework isin-
spiring and innovative, it islimited to only classfying some clasesof Skypetrac
and deperds on the dderministi ¢ byte values in the unencrypted UDP payload. In
our studies we have focused on TCP trac where the whole mntent of a Skype
messageis encrypted and tunneled over the SS_ protocol.

To summarize, the reseach descibed above focusad either on limited class -
cation of Skype trac deperding on particular unenaypted payload bytes or on
some typical behavior of the Skype protocol. We believe that the problem of the
detailed class cation of encryptedtra c, in particular, theidenti cation of service

ows in the encrypted Skype trac hasnot receved suci ent attention yet. Our
hybrid method providesa step forward in this diredion.

9.5 Conclusions

In this paper, we have considered the problem of deteding encrypted TCP
Skypetra ctunneledover SS. and classfying Skype service ows. Our threephase
hybrid class ¢ ation method is based on SPID and combinestraditional statistical

ow features with DPI elements. In ead phase, we seled a subst of relevant
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attribute meters through forward selecion basedon ANOVA. The performance of
themethod on arepresentative datase is very promising|i t achieveshigh Precision
and Reall for most Skype service ows, whereas distinguishing between voice and
video ows in the n al classi cation phase is more callenging due to spreadng
trac onseveral TCP connections
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In this thesis, we have already emphasized the importance of adequate traf-
c classic ation methods for e ective network planning, policy-basal trac man-
agenent, application prioritization, and seaurity corntrol. Traditional port-based
[14, 17, 98] and payload-basel [7, 5, 99 class cation methods, however, become
lese cient, because new applications begin to usesophisticated obfuscation mech-
anisms and an increasal number of applications make use of encryption, eqg., Tor
[10d, 12P [101], Bittorrent [102, IMule [103, Skype [93]. Applications can hide
their nature by dynamically assgning ports, by using tunneling, or by applying
proprietary payload encryption methods. This situation hasledto the development
of new o w feature-based[3, 52] and hog behavior-basel [2, 19] classi cation meth-
ods. In opposgtion to theseapproaces we propose a classi cation framework that
usestwo statistical, payload-based methods to accurately classfy trac encrypted
with the Transport Layer Secuity/Secure Sockets Layer (TLS/SSL) protocols.
TLS/SSL is a fundamertal cryptographic protocol suite that supports secure
communication over the Internet [104] by encapsulating and encrypting application
layer data. Many WWW portals and servers, egecially those providing commer-
cial sevices, use TLS/SSL for guaranteeing security of all operations. In addition
to secuity, TLS/SSL tunnels are increasngly used as tools for defeating searity
control and bypassng restrictions set by network con guration and security cheds.
Enforcing cortrol over TLS/SSL encrypted ow is di cu It, because the protocol
was sped c ally dedgned to prevent eavesdropping and data tampering. Thus, the
side-e ect of its powerful mechanismsfor supporting secuity is the log capabhility
of monitoring and cortrolling trac .
The past research on tra c analysis and classi cation showed that once we are
able to generate a unique signature basedon the padket or message payload (e.g.,
HTTP request headers), we can classfy applications with high accuracy [7, 16].
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Unfortunately, such approachesfail in cas of encrypted trac [13], which spawned
the development of ow-basal and hog behavior-basal approaches Nevertheless,
recent research has also shown that it is dill possble to create some statistical
signaturesdesitetrac encryption [18, 23]. We follow this approac by de ning a
framework for classfying TLS/SSL encrypted applications basel on inspeding the
padket cortent of the application layer. We have found that the useof the TLS/SSL
protocol strongly deperds on savice and application needs so it can re ed some
trac features which allows us to disaiminate between applications. In other
words, we extract someindirect information from the TLS/SSL layer and useit to
classify underlying applications.

10.1 Contributi ons of Part 1V

Following theseprinciples, we den e a framework based on two complementary
methods for classfying applications In the r st method, we use a rst-order ho-
mogeneous Markov chain to build a stochastic model ree cting TLS/SSL sesson
states. We call this method a Markov Classi e r (MC). The sesion statesrepreset
the TLS/SSL protocol and messgetypesin singlediredional tra ¢ ows (client
to saver and serverto client). In thisway, we obtain a TLS/S SL sesson model per

ow diredion as®ociated with each application. To the beg of our knowledge, such
a method is applied for the r st time to the dass cation of encrypted trac . The
second method calleda Timestamp Classi er (TC) considers the deviation between
thetimestamp in the TLS/SSL Server Hello messageand the packet arrival time.

We validate the framework with experiments on three recent datasds gathered
on two edgerouters. They sewvein atraining phaseto build application models. To
obtain the ground truth, we use a simple Domain Name Sydem Classi er (DNSC)
that extracts application ows based on the orresponding hog names We only
keg the ows for which we can nd the domain namesof the chosen portals and
savicessowe are sure that training ows corregpond to the considered applications
Then, we usethe proposed methods to classfy chosenapplicationsand evaluate the
amount of true postivesand false positives. The chosen applications are represen
tative of TLS/SSL encrypted tra c: PayPal, MBank (an online bank savice),
Mozilla, Twitter, Opera, Gadu-Gadu (a popular Polish instant mesnger), and
Dropbox.

We ted the proposed class ers sparately or jointly on di e rent datasets and
we evaluate the contribution of each method to the nal classi cation reailt. In the
caz of the mog heterogerous datasds usedfor training and in the testing phase
(the conditions favorable for the methods), we achieve very good accuacy with
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more than 92% of the True Postive Rate and lessthan 1.5% of the False Postive
Rate. Under adverseconditions for the methods, in the caseof a les represatative
training dataset, the methods obtain slightly les accurate reailts with the True
Positive Rate ranging from 77.7% to 80.1% and the False Positive Rate between
24%to 3.8%.

Our key contributions are:

we successully apply stochastic modeling in terms of a r st-order homoge
neows Markov chain to the classi cation of application ows encrypted with
TLS/SSL;

we proposea simple discrimination method based on the deviation between
thetimestamp in the TLS/SSL Server Hello messageand the padet arrival
time. The method improves the acauracy of application class cation and
allows eci ent iderti cation of Skype ows;

our experimental reaults show very good classi cation performance on recent
datasets re e cting di e rent network environments and conditions.

10.2 Relevant Publi cations for Part |V

Maciej Korczynski and Andrzej Duda. Classifying TLS/S SL Encrypted Applica-
tion Flows. to be submitted.
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11.1 Related Work

A lot of resarch eor t concanedtra c classic ation [7, 5, 99, 3, 52, 2, 19, 16,
13, 25, 96]. Recent attention hasturnedto the problem of revealing and idertifying
encrypted applications and their underlying ows [18, 23]. We brie y review this
recen work.

As new Internet applications garted to use obfuscation methods (port mas
querading, tunneling, and encryption) to evadetra ¢ control and redrictions, sim-
ple inspection of port numbersisnolonge areliable dassi cation mechanism[5, 15]
(cf. Sedion 3.3.1). Moreover, payloadencryption easiy thwartstraditional payload-
based classi c ation basal on pattern matching. Host behavior-based approaces
[2, 19 (cf. Sedion 3.3.3) can potentially address the ine ciency of content-based
methods. BLINC for example, proposesan interesting method based on observing
and reacgnizing models of hog behavior and then classfying its ows according to
the models [2]. Howewer, the method might be less e edive when only a small part
of behavioral information on individual hods is available.

The seoond fundamentally di er ent group of payload-independent approaces
use ow-based features such as average packet sizes packets inter-arrival times,
or ow durations [3, 52, 25] (cf. Sedion 3.34). A receit hybrid method triesto
identify TLS/SSL encrypted application layer protocols with a combination of a
signature-based and a o w-based statistical analysis scheme [25]. The method is
closly related to our proposal however its objective is limited to the dassi cation
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of encrypted application layer protocols, while we concentrate more on an in-depth
analysis of the TLS/SSL protocol and revealing application ows.

In our work, we adopt a payload-based approad (cf. Secion 3.3.2) to demon-
strate that it is possible to eectively reveal and classfy application ows by in-
speding application layer protocols. Rissoet al. introduced a taxonomy of payload-
basedclass cation methods [13] and argued that they are mainly based on pattern
veri cation. A key challenge in encrypted trac classi cation is to replace tra-
ditional pattern veri c ation with more sophisticated methods basedon statistical
ng erprints, for instance, by identifying groups of bits or bytesthat exhibit unique
distributions. Indeed few resarchers attempted to create such statistical n ge-
prints [18, 22, 23]. Bonglio et al. in their inspiring work have invedigated Skype
trac transported mainly by UDP [18]. Skypetrac preserts a major challenge
for classi c ation, because of proprietary software and internal encryption meth ods
(cf. Chapter 8). Howevwer, they concluded that the Skype messags can be iden-
ti ed by examining the initial portion of the payload|so- called Start of Message
(SoM). Speci cally, authors examine randomness of initial groups of bits by mears
of a Chi-Square test. Some blocks of bits are random, whereassome other appear
to be deterministic or mixed. While their innovative approadc can be successully
extended to other tra c¢ dassi cation problems, the method deperds on the obser
vation of specic eldsin the proprietary Skype protocol. Our method appliesto a
gereral cas of the standard TLS/S SL encryption protocol.

In our previous work [23] (cf. Part Ill), we have considered the problem of
deteding encrypted TCP Skype trac tunneled over SS. and classfying Skype
savice ows such asvoicecalls, skypeCQut, video conferencing, chat, leupload and
download. The initial classi cation phaseis basal on Statistical Protocol ID enti-

cation (SPID) algorithm [22] that analyzes some statistical values of the padket
payload. Our experiments showed that inspeding only the r st ve padets con-
taining the payloadis au cientt o reveal encrypted TCP Skype owstunneled over
SSL with Predsion, Recall, and F-Measure equal to 100%.

11.2 TL S/SSL Overview

Secue Sockets Layer (S9.) and its succes®r Trangport Layer Security (TLS)
are cryptographic protocols that provide searre cmmmunication between two parties
over the Intemet [104. They encapsulate application protocols such as HTTP or
FTP.

Figure 11.1 illustrates the structure of TLS/SSL and its componerts:

" Rewmrd Protocol: compressesand encrypts upper-layer data using the seaurity
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In this chapter, we use the principlesof TLS/S SL protocol desgn to classify en-
crypted applications In particular, we proposetwo classi ers that exploit di er ent
aspeds and characteristics derived from TLS/S SL messges

12.1 Markov Class er

Our Markov Classi er (MC) takesinto accownt messgetypes in a TLS/SSL
sesdon obseved at a client or a sewver: we refer to the saver-side MC as MCS
and to the client-side MC as MCC. Deperding on the network environment, we
exped slightly di erent characteristics for the client side, whereas the saviceside
model should be representative of all networks. Moreover, the separation of client-
and server-side class ers helps tadkling the problem of asymmetric routing (if a
network hastwo edge routers, routes may be asymmetric so ead router can only
gather information on a ow in onediredion).

We usethe following compact notation of messgestypeqt he decimal protocol
types and the Handshake messagetypes preseat in TLS/SSL headers (cf. Figure
12.1).

To den ethe state spaceusd in classi cation basedon rst-order homogereous
Markov chain, let us congder again the messageexchangepresntedin the previous
section (cf. Figure 11.2). This time, however, we will trandate the client-server
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protocol types remain visible, becawse the message types are encrypted. There-
fore, we cannot extr act either handshake Finished message(represented as22:) or
underlying type of Alert protocol (represerted as 21). To summarize, from the
diagram presented in Figure 12.2 we can distinguish one Markov chain per direc-
tion represerting the underlying application. The dient-side sesson, corresponding
to MCC class c ation, is composeal of two states, whereas the sewer-side sesson,
as®ciated with MCS classi c ation, consist of ve states.

We consider discrete-time random variable X for any t = to;ty; 5ty 2 T. It
takesvaluesi; 2 f1;:::;sg corregponding to the observed TLS/S SL messagetypes
during a session. We assume that X; isa rst-order Markov chain [105, 29]:

= P(Xt=ijXt 1= 1t a): (121)

We furt her assume that the Markov chain is homogeaeous i.e. a state transtion
from timet 1totimet istime-invariant:

P(Xt= 10Xt 1= 0t 1) = P(X¢=jjXy 1=10) = pij; (12.2)

with the transition matrix [105 29):

2 3
P11 P1;2 P1;s
p= Epu P2;2 | Dzl;s : (123)
Ps;1 Ps;2 Ps;s
P S
where: [, pij = 1. We denote by:
= [on; ;5G] (124)

the Initial Probability Distribution (IPD) whereg = P(X{ = 1) at timet = 0.
Finally, the probability that a sequence of states X1;:::; Xt representing a
single TLS/SSL sesdon occurs is as follows:
N

P(fX 100X 7) = Piy 1 (125)
t=2

To illustrate our approadc, we present t he observed transition probabhility ma-
tricesand the initial probability distributions of the MCS models for sekcted ap-
plications.
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Actually, Skype is a proprietary piece of software that usesits own internal
encrypti on mechanisms and a complex connedion protocol desgned for bypassng
rewalls and edablishing communication regardless of network policies[92, 93, 23].
Skype randomly seleds ports and can switch to port 443 if it fails to edablish a
connection on chosenports (cf. Chapter 8). Such tedhnique issuci ent to bypass
network-layer rewalls, however, it realts in edablishing a particular TLS/SSL
sesson.

Table 12.1: Number of non-zero transition matrix elements for di er ernt ap-

plications
L # training ows # transition
Application .
(# servers) matrix elements
Gadu-Gadu 1196(51) 63
MBank 2665(3) 29
Opera 4357(13) 26
PayPal 434 (6) 16
Mozilla 2669(21) 38
Twitter 1530(13) 36
Dropbox 3134(317) 43

12.1.2 Discussion

The most important conclusion that we can draw from the examplesis that the
parameters of the Markov models for chosen applications di er a lot, which is the
basis for accurate discrimination betweenapplications. We have also found that the
number of transition matrix elementsin each application model signi cartly di er .
Table 12.1 presents the number of non-zero elements in the transition matrix, the
number of training sessns, and the number of sewers that gererated them, in the
mog representative Campus2lataset

12.1.3 Training Phase

To build the Markov models represnting the applications behavior, our classi-

er needs a training phaseduring which it analyzes ground-truth data corntaining
application ows. The classier analyzes traces pre-processel and Itered out by
tshark [10€] so that only TLS/SSL encrypted packets are pas®d to further inspec-
tion. Then, it usesthe DNSC classi cation to create a benchmark datase in which
application owsareidenti ed with a high cond encelewel (cf. Section 13.1.1). The
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classier only considers a limited number of elds|i t rst extracts the IP souce
and destination addresses the souce and destination ports to create unique iden
ti ers of each sesson. Further, it builds 14 single-directional models corresponding
to 7 chosen applications basedon all unencrypted TLS/SSL protocol and message

types.

12.1.4 Classica tion Phase

The dassi er rst preprocessthe ted datase t o extract application ows and
then applies a decision process baseal on the Maximum Likelihood criterion [107].
Class c ation correspondsto amulti-hypothesk decision problem. Moresped cally,

cations. We apply a classcal approad basedon Maximum Lik elihood criterion|w e
sdect the hypothedss under which the data sequence Y is most likely:

H = argmaxlogL(fYs;:::; YrojHi); (126)
H.

a message sgjuence computed over ead of the application models.

12.2 Timestamp Classi er

The seoond classi er analyzesthe probability distribution of the gmt_unix_time
eld in the TLS/S SL Server Hello message The initial handshake Client Hello
and Server Hello messagesinclude a random structure used later in encryption
composed of two elds: gmt_unix_time (4 bytes) and random_bytes (28 bytes) [104].
Deperding on applications, the gmt_unix_time eld contains di e rent timestamps:
the current time and date sd& by the sende clock, a random sequence of 32 bits, or

a constant value, and in particular, 0.

TheTimestamp Classi e r extractsthe gmt_unix_time timegamp from the Server
Hello messageand the padket reception instant from the capture | e. It keepsonly
the rst 3 most signi cant bytes of the value to neglect possible small time di e r-
ences between the sender and the devicethat capturespadkets. 3 bytesare mnsd-

as random variables of possble valuesof byte i 2 1;2; 3 of the gmt_unix_time eld
and the padket reception timedamp, regectively. ; = jX; Y;jj, is a deviation
measue between the gmt_unix_time eld and the corresponding padket timestamp.
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Table 12.2: Content characteristics of the gmt_unix_time eld

gmt_unix_time i

Current time || Const (= 0)
Random Rnd

Deterministic Const

The relationship between gmt_unix_time eld and ; is summarized in Table 12.2:
we exped obtained n gemrints to present random or deterministic distributions
deperding on the application.

At t he initial training phase the method creates statistical n germrints of the
timedamp deviation for ead application tra c. During the dassi cation phase,
the method computesthe deviation and compares with thetra c models by mears
of the Kullbadk-Leibler (K-L) divergerce [28]:

DR = KL Q) = P(loghlL).
’ - Q( i)

(12.7)

The K-L divergerceis a measire of the di erence between two probability dis-
tributions P( i) and Q( i). P( i) represerts the distribution of the byte frequency
of j inan obseved ow and Q( ;) isthedistribution corresponding to one of seven
application models. Classi cation condgsts of comparing P ( ;) with all known ap-
plication models and seleding the one with the smalleg averagedivergence. When
TC is a part of the dassi cation framework explained in Section 12.3 then we con-
sider probability distributions Q( j), where ; refersto the analyzed sesson for all
application models.

Aftertheanalysisof Q( ;) for sevenchosenapplicationsover the Campus2iataset
and for Skype over the Skype dataset, we have observed four groups of applications

The largest group represented by Gadu-Gadu, Mozilla, Twitt er, and Dropbox,
hasthe same Q( ;) distribution determined by the current time. Another group con
tains PayPal with a uniform distribution. The Q( ;) distributions of MBank and
Opera indicate that in both cases around 80% of all ses$ons hasthe gmt_unix_time

eld determined by the dock while the remaining 20% of values are evenly dis-
tributed. Finally, the most interesting statistical n gemprint corresponds to the
Skypetrac tunneledthrough TLS/SSL protocol: the gmt_unix_time eld isdeter-
ministic and interpreted by network protocol analyzersasJan 31, 2004 18:23:18
CETt he whole 32-byte long random structure is in fact deterministic (note that
it isnormally usedin the ercryption process). Nevertheless it is not soimportant
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for Skypelit uses TLS/SSL only to establish a tunnel bypassng rewalls and it
encrypts its data with a proprietary protocol.

So, in gereral, we can only determine a classof applications by inspecting the
timegamps. However, in the caseof Skype, the deterministic value of gmt_unix_time
givesusan acaurate signaturefor idertifying the Skypetra c tunneledover TLS/SSL.

12.3 Class ca tion Framework

Our class c ation framework is built upon the Naive Bayes Classi er (NBC)
[30] that combines previously desaibed methods, i.e. two Markov Classi ers corre-
sponding to saver and client-side models and the Timedamp Class er that con
siders the randomness of timestamps. The Naive Bayes Class er has been used
extensively in the domain of tra c dassi cation [3, 18] and proved to be very ef-
fective desite its simplicity [30].

The Naive Bayes Classier applies the Bayes theorem with a strong (naive)
asamption of the indeperdence of input features descibing an objed. Let vector

of C classes By applying the Bayes theorem we can quantify probability P (CjF)
that the object represent classC using the a-priori probability P (FjC):

. _ P(C\ F) _ P(F|C) _
P(CjF) = PE) - P P(C): (128)

As we assume that ead feature F; is conditionally independet of another fea-

Y
P(FjC) = P(FijC): (12.9)

In our classic ation framework, di er ent classi ers play the role of features.
More speci c ally, class C is assaiated with one of sewen applications, whereas
Fi may represn t he server-side or/and the client-side messagechain or/and the
timedamp n germrint of the session to analyze. The n al decision discriminating
between di er ent applications is made based on the Maximum Likelihood crite-
rion (cf. Eg. 126). Finally, in the preented framework, we naively assime the
indeperdence between various class ers, eg., between MCS applied to messages
coming from the sever side and MCC used to compute the probahility of mesage
sguence originated at the cliernt side. Howewver, asour framework doesnot require a
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strong independence assumption of underlying classi ers, NBC realltsin very good
acauracy shown in the next section.
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13.1 Experiments

In this se¢ion, we preseit t he results of applying the proposeal classic ation
framework to trace datases.

13.1.1 Datasets

We have gathered threedataset at two edgerouterslocated in Poland. Campusl
and Campusdatasets come from a link conneding a campus network of the AGH
University of Science and Technology in Cracow to the Internet. The link hasthe
capacity of 70 Mbits/s for incoming and 30 Mbits/s for outgoing trac . Campusl
datasetcontains a one day long trace starting on Thursday, March 1, 2012, whereas
the 24 hours long Campus2iataset was obtained starting on Saturday, March 26,
2012. Both datasds contain trac gererated by standard sewices such as web,
chat, mail, VolP, le trander, or streaming applications. The Campus2dataset
is the most heterogerous one with numerous applications and a large number of
active online users reading 500 peode (majority of users are university students
and faculty). Dueto strict policiesenforced by r ewalls and restrictions for certain
streaming and p2p applications, usea's commonly tunnel redricted trac .

Enterprise dataset contains traces gathered during a 93 hour period starting
on Sunday, July 1, 2012 on a 20 Mbit/s link connecting a small IT company to
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the Internet. Thetrac re eds the company prol e and mainly contains o ce

applications such as mail, VolP, or web. There areno strict rewall rulesapplied at
the edgerouter. Enterprise dataset contains more homogereouws tra c than the
two datasets captured on the campus.

To egablishthe ground truth, we have dewveloped a Domain Name System Clas-
sier (DNSC) to extract and classify TLS/S SL application ows according to their
domain names More speci c ally, DNSC matches hosthamesagainst our array of
signature strings like for example twitter, twttr in caseof Twitter. The method
is simple and reallts in a very high cond ence level conr med by manual payload
inspection. Nevertheless, we might not cover all instances of signatures for a par-
ticular application. Another constraint of the approac is that we cannot obtain
the instances of applications if we are not able to resolve IP addresss into the
correponding domain names. To overcometheselimitations, we have used in our
experimental evaluation only the trac for which the IP addressresolution was
possble and corresponding strings are str aightforward and unambiguous.

Table 13.1: Applications, the number of application ows, the number of
savers vs. number of clients in threedatasets

Application Campusl Campus2 Enterprise
PayPal 546 (9 - 96) 434 (6 - 97) 172 (13- 11)
Twitter 1411(17-29) | 1530(13-30) | 157(11-6)
Dropbox || 1160(171- 95) | 3134(317-133) | 177(31-9)

Gadu-Gadu || 987 (50-321) | 1196(51 - 343) 30(17- 4)
MBank 321(2 - 49) 2665(3 - 51) 44 (2 - 6)
Opera 3246 (15- 140) | 4357(13- 132) | 2034(13- 16)
Mozilla 2436(20- 271) | 2669(21- 292) | 2867(24 - 68)

Table 13.1 shows the parameters of three datasds: the number of application

ow sanplesand in the bradkets, the number of sewvers versus the number of clients

that use the savice (for example, Campusidataset contains the tracesof 321 users
who have connected to 50 Gadu-Gadu seaversin 987 ows).

Table 13.2 preserts more statistics on the relationship between datasets: the
corregponding number of servers and clients common to respedive datasds (eg.,
there are 6 common PayPal sewers in Campusland Campus2iatasets aswell as 46
common clients). Their purpose is to estimate the applicability of datasds. From
thejoint analysis of two presentedtables,in case of Gadu-Gadu for example, we can
exped very good classic ation resutsif the sewver-side behavior is computed on the
basis of the Campus2dataset and is applied to the Enterprise dataset (Campus2
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Table 13.2: Applications and the corresponding number of servers and clients
common to respective datasds

L Campusl | Enterprise Enterprise
Application
\ Campus2 \ Campusl| \ Campus2
PayPal 6-46 2- 2-
Twitter 12-8 9- 9-
Dropbox 113- 65 19- 21-
Gadu-Gadu 44 - 230 16 - 16 -
MBank 1-12 1- 1-
Opera 13- 105 12 - 11-
Mozila 17- 169 6 - 6 -

cortains almost all Gadu-Gadu savers aceesedin Enterprise , 16 out of 17). By
contrast, we may expect slightly worsereaults for Gadu-Gadu client models because
of a smal number of common clients (Campushas343clientsdi erent from 4 clients
in the Enterprise datase).

Finally, we will often refer to Skype as an example of trac tunneled through
TLS/SSL. Theevaluation runs on a set of padket t races referred to as Skype dataset
gererated in the experiments of classfying Skype service ows (cf. Sedion 9.2.1).

13.1.2 Criteria for Classi ca tion Perform ance

We assume that the class cation basal on the DNSC reference class er pro-
vides the ground truth and we evaluate the proposed class ers with resped to its
classi c ation decisions. We condgder two mearningful metrics to asses the perfor-
mance of a classi c ation method: the True Positive Rate and False Postive Rate,
denoted as TPR and FPR, respedivey (cf. Eg. 3.1, 3.2). TPR is known as sen-
sitivity, and 1 FPR is commonly referred to as sped c ity. True Podtive occurs
when the dassi cation reallt is congsternt with the classi cation dedsion taken by
DNSC and the application sesion is corredly class e d asa given application, e.g.,
a PayPal sesion is accurately recogrized as PayPal. Conversely, False Postive
ocaurs when the dassi cation reault is inconsistent with the decision taken by the
reference class er and a sesson is incorredly classi ed, e.q., a Twitter sesgon is
falsely recogrized as PayPal.

13.1.3 Classica tion Results

In this section, we report on the classi cation reaults of the proposedframework:
we r sttest MCS+ MCC+ TC and MCS+TC on Campushnd Enterprise datases,
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regectively when Campus2iataset served for training.

Table 13.3: Results for MCS+MCC+ TC on Campusl dataset. applications,
total number ows, number of not classi ed ows, absolute TP
and FP aswell astheir rates Training set: Campus2

Application || # ows |#missed | # TP | TPR | #F P | FPR
PayPal 546 55 437 | 0.89 54 | 0.006
Twitter 1411 30 1138 | 0.824 | 174 | 0.021
Dropbox 1160 1 1102 | 0951 | 32 | 0.004
Gadu-Gadu 987 18 939 | 0969 | 24 | 0.003
MBank 321 20 277 | 0.92 73 | 0.008
Opera 3246 224 2832 | 0937 | 217 | 0.032
Mozilla 2436 5 2375 | 0977 | 80 | 0.011

Table 13.3 shows the results for MCS+MCC+ TC classi ers. Let us take the
example of Mozlla for which we observe that the TP rateisvery large (97.7%) with
relatively small rate of FP (1.1%). The good realts come from the fact that for
Mozilla, Campusland CampusZhare common servers and clients (CampusZovers
17 out of 20 savers and 169 out of 271 clients that also occurred in the analyzed
Campusdataset cf. Tables 13.1 and 13.2).

In the case of Twitt er, we can obsave les accurate results (T PR of 824%, FPR
of 2.1%), because the overlap of clients and savers in the two datases is not so
signi c ant. By manual inspedion, we have observed that the degradation in the
TP rate for Twitt er is due to some similarities of its MC models with Opera and
MBank, which also reailts in a dightly higher rate of FP for Opera and MBank,
becawse some Twitt er sessons are falsely class ed aseither Opera or MB ank.

Table 134 presents the reailts for the MCS+T C classi ers on the Enterprise
dataset with the Campus2ataset used for training. We can seethat for Gadu-
Gadu, the classiers have oorrectly recognzed all application instanceswith only
two sessbns incorrectly classi ed as Gadu-Gadu. A similar reasoning applies to
the Enterprise dataseft he training Campus2iataset covers 16 out of 17 sewers
(cf. Tables 13.1 and 132). Howewer, notice that 17 Gadu-Gadu sesions (that
correpond to 56% of all application instances) were not classi ed. By manually
inspecting the o ws, we have observeddlightly di erent TLS/S SL messagesequences
compared to those in the training phase.

All MBank sessions were correctly class ed, but this time, there were no un-
remgnized sessons (marked in Table 134 asmissd). We can explain lessaccurate
reslts with TPR egual only to 64.3% for PayPal by a small number of sesson
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Table 13.4: Reallts for MCS+ TC on Enterprise dataset applications total
number ows, number of not class ed ows, absolute TP and FP
aswell astheir rates. Training set: Campus2

Application || # ows |#missed | # TP | TPR | #F P | FPR

PayPal 172 29 92 0643 | 212 | 0.04
Gadu-Gadu 30 17 13 1 2 0.000
Twitter 157 125 | 0.796 | 154 | 0.029

0

Dropbox 177 1 168 | 0.955| 16 | 0.003
MBank 44 0 44 1 52 | 0.010
Opera 2034 4 1723 | 0.848 | 459 | 0.135
Mozilla 2867 2 2319 [ 0809 | 49 | 0.019

instancesin the training phase All manually inspected PayPal o ws either dlightly
di er from the pre-computed model or they are class e d as other applications for
which the models were mngructed using a richer set of sesson instances and have
a complex structure allowing for diverse mesage quences

13.1.4 Classier Selection

In this part, we want t o evaluate the impact of the proposedclass ers on the
nal class c ation decision by the framework. For all experiments reported in this
section, weanalyzeup to vetranstionsof both server and client-side Markov chains
(we explain the limit of v e transitionsin the discussion of parameter calibration
in Sedion 13.1.5). We consider the analysis of Campusland Enterprise datases
under thetraining phaseon Campusaswell asthe analysis of Campusknd Campus2
datasetsunder thetraining phaseon Enterprise . Wepresentt heresutsby plotting
TPR on y-axes and FPR on x-axes (cf. Figure 13.1)|t he values correspond to
the average TPR and FPR obtained for ead1 of seven applications, i.e. Gadu-
Gadu, MBank, Opera, PayPal, Mozilla, Twitt er, and Dropbox. We test our Bayes
framework composed of: the single MCS, MCC, or TC classi er, and the joint

MCS+T C, MCC+T C, MCS+MCC+ TC classi ers.

Let us rst focus on the most heterogeneous Campus2iataset useal for training.
Theleft-hand side of Figure 13.1 presertstheresult s of the analysis on Campuskand
Enterprise datasets. We an obsewve that Markov models computed for the server
side give signi c antly better resdts than the models constructed at the client side
regardless of the datase used in the class c ation process Sever-side models are
much easier to build and are more universal across di e rent networks, while client-
side models are more network-speci ¢. Recall that clients on di er ent networks
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Enterprise dataset

Enterprise asatraining datasetleads to slightly worse reaultsthan in the pre-
vious case, becausethe MC models do not cover enough TLS/S SL sesson instances
to be ee ctive compared to the associated Campusland CampusZatases (cf. Ta-
bles 13.1 and 132). The reailts reported in the right top graph of Figure 131
indicate that the s¢ of MCS+TC performs slightly better (T PR of 80.1% FPR of
3.8%) than the jointly usedMCC+ MCS+ TC classic ation (TPR of 78.1%n FPR of
3.3%). Finally, the results obtained for the classi cation of the mos heterogereous
Campus2latasetare much worse for the MCS classi er, which leads to the seledion
of MCS+MCC+ RC for the class cation framework (cf. theright bottom graph of
Figure 13.1).

From the above experimertal reailts, we can corclude that

~

MCS is the essertial part of the dassi cation framework. If we build the
application models on a heterogerous training dataset that covers a wide
range of session instances, they can apply acrossdi er ent subnetworks;

A~

MCC can bevery e ective when the framework analyzesthe datasets collected
on the samesubnetwork usedfor collecting training datasets;

" thejoint usageof TC with Markov class ers gives consgderably bett er classi-
cation reaults compared to the performance only based on MCS and MCC.

13.1.5 Parameter Calibr ati on

In this section, we invegigate the sensitivity of a separately used sever-side
or client-side Markov class er on the number of condgdered trandgtions in a given
Markov chain. We perform the sensitivity analysis on the mogs heterogerous Cam-
pus2 dataset pre<class ed by applying DNSC classi cation desaibed in Section
13.1.1. TP and FP ratesrepresnt t he average values obtained for ead of seven
considered applications. Figure 13.2 presens the impact of the number of state
trangtions used in both training and teding phaseon TP and FP rates We can
notice that for both TPR and FPR, class cation basedon only 5 transtions is
roughly as accurate as classi cation based on 100 transitions. These resuts high-
light t he scalability of the proposed framework|i t requires considering only several

rst TLS/S SL messages to obtain very good classi cation results.

13.2 Conclusion

In this part, we have de ned a framework based on two complementary meth-
ods for classfying applications The rst one usesa stochagic model represeanting
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Conclusions

Even though the domain of trac classi cation is relatively well explored, our
primary goal is to enrich existing research e orts by our own cortributions. The
isaues considered in this thess were inspired by common problems existing in real -
operational networks. Thus, we have tried to bridgethe gap between academia and
professional practice In this chapter, we summarizethe thess claims and highlight
the future diredions of this reserch.

E cien cy and scalability

In Part I, we have proposel a detection scheme for high-volume SYN ooding
attacks and low-volume portscan activity. We have demorstrated that our
method achievesa high attadk detection rate (True Postive Rate). Moreover,
in comparison with existing methods, we have reduced the False Postive
Rate, i.e.,, when legitimate packets are classi e d asmaliciousones. Finally, by
using samging methods, we have signi ¢ antly reducedthe in u ence of padket
sanpling on the performance of the detedion scheme. Howewer, as far as
salability is concerned, we believe that the future practical implementation
based on Snort [61] or Bro [10§ might be even more corvincing than the
evaluation proces based on the proof-of-theconcept algorithm presnted in
this thesis.

Challen ges ahead

Among various challengesin the domain of tra c analysis, classfying en-
crypted ows seensto bethe mog urgert one because, an increaed number
of applications make use of encryption, eg., Tor [10d, I2P [101]], BitTorrent
[102, IMule [103, Skype [93]. In Part Il , we have proposed a class c ation
method for recognizing Skype encrypted trac tunneled over SSL and iden-
tifying its srvice ows. Then, in Part 1V, we have de ned a more gereric
framework based on two complementary methods for classfying applications
encrypted with TLS/S SL protocol. Our resuts shed a newlight on the poten
tial of approaches baseal on application-layer protocol analysis for encrypted
and tunneled trac .
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Refute the myths

In the reseaich community, there is a number of common beliefs that should
beveri e d such asthe opinion that port-basel classi cation approacesarein-
adequate any longerin trac classi cation, or that DPI methods do not scale
to hight bandwidth rates. In our work, we argue the beliefthat payload-based
methods always fail in cae of encrypted trac. In Part IV, we have inves
tigated in-depth TLS/S SL header structure and we have proposed a frame
work for encrypted trac classi cation. We believe that there are still many
"myths" in the domain of trac classi cation that should be invedigated in
detail and perhaps revised.

Form alizat ion of the domain

A comparison (if possble) between di e rent methodologies is an important
part of any ewvaluation process However, it is a di cu It task, not only due
to the lack of a shared testing platform or easiy available padket traces but
basically because of the lack of a common understanding of concepts auch as
the de nition of the class cation classes. In this thess (cf. Section 3.2), we
have addressal this parti cular problem by proposng threeclassi cation goals,
i.e, we propose to classify trac acoording to its category, application-leve
protocol, or application that gereratestrac . Moreover, in Section 3.3 we
have preserted an extended taxonomy for approaches in tra ¢ dassi cation
based on the resarch presented in this thesis. For completeness, another
attempt aiming at formalizing the domain based on orntology paradigms has
beenproposal recertly [109.

Pr actic al deployment

Many of reserrch methodologies espedally based on statistical methods, have
never been evaluated in the real -operational networks (with some excep-
tions, for example, TCP STatistic and Analysis Tool (Tstat) [110 or Hybrid
Trac Identi cation (HTI) [24]). Thus, as mentioned before, one of intered-
ing research diredions would be practical implementation and deployment of
methods preseted in this theds in a campus network.

Inter -domain port ability

Although, we have preserted intrusion detection as a sub-domain of trac

classi c ation problem, it is often conddered in the literature as a separate
research subject. Thus, we believethat applying someof existing class c ation
methods in detedion of intrusive activity would be an intereding research
subject. Even if not preserted in this thess, we have successully applied
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the method proposed in Part Il to the detection of malicious trac |t he
propagation of Worm.Win32.XKipi.b that spreads over the Skype messenger
[111]. In the future work, we would like to explore how the proposel methods
can be extended to other classi cation problems.

Ap propri ate feature selection

The problem of feature seledion and parameter calibration has been well
studied in the domain of trac class c ation including the presented thess.
However, we believe that some standard recommendations should be intro-
ducedto separate training tracesfrom datasds usedin parameter tuning and
in the evaluation process. Indeed feature selecion and parameter calibration
methods tend to optimize performance resuts for particular datasds. More-
over, in the future work, we may condder automatic feature sdection and
calibration processas a part of practical implementations.

Hybrid approaches

As it wasmertioned eallier, in recent years, we have observedthat application
dewelopers tend to evade trac class cation by encryption and other obfus-
cation methods. Even some governmerts are intereded in an anonymous p2p
technology, for example, Tor project aims at protecting usas' privacy [100.
As a reallt, more complexed, hybrid meth ods combining di erent approaces
should be applied in the future such asthe one preserted in Part Il of the
thesi, which putstogethertra ¢ ow featuresand complex DPI elements to
identify Skype savice ows.

Ground tru th

The last but not least isste revised in the thesis conclusions is related to
pre-labeled datasds, namdy to the ground-truth information, crucial for ev-
ery evaluation process. In Part IV, we have developed a simple method called
DNSC toextract encrypted application owsacordingtotheir domain names
Although the method can classfy even encryptedtrac with high cond ence
level, it is characterized by a limited classi cation scope. As a result, we be-
lieve that a common testbed based on multiple reliable, but not necesarily
salable or light weight algorithmsis required for crosschecking and gererat-
ing a valid ground truth.
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