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A bst ract

The subject of t ra�c classi�c ation is of great importance for e�ec t ive network

planning, policy-based tra�c management, application priorit ization, and security

control. Al though it has received substant ial att ent ion in the research community

there are st il l many unresolved issues, for example how to classify encrypted tr a�c

 ows. This thesis is composed of four parts. The �r st part presents sometheoret ical

aspects related to t ra�c classi� cation and int rusion detection, while in the following

three parts we tackle speci� c classi� cation problemsand proposeaccurate solut ions.

In the second part, we proposean accurate sampling scheme for detecting SYN

 ooding attacks as well as TCP portscan act ivity. The scheme examines TCP

segments to �nd at least one of mult iple ACK segments coming from the server.

The method is simple and scalable, because it achieves a good detection with a

FalsePosit ive Rate closeto zero even for very low sampling rates. Our t race-based

simulations show that the e�e ctivenessof the proposed scheme only relies on the

sampling rate regardless of the sampling method.

In the third part , we consider the problem of detecting Skype tr a�c and classi-

fying Skype service  ows such as voicecalls, skypeOut , video conferences, chat, � le

upload and download. We propose a classi� cation method for Skype encrypted t raf-

� c basedon the Statistical Protocol IDent i�c ation (SPID) t hat analyzes statist ical

values of some tra�c att ributes. We have evaluated our method on a representative

dataset to show excellent performance in terms of Precision and Recall.

The last part de� nesa framework basedon two complementary methods for clas-

sifying application  ows encrypted with TLS/S SL. The � rst one models TLS/SSL

session states as a � rst -order homogeneous Markov chain. The parameters of the

Markov models for each considered application di� er a lot, which is the basis for

accurate discrimination between applications. The second classi�e r considers the

deviation between the t imestamp in the TLS/SSL Server Hello messageand the

packet arrival t ime. It improves the accuracy of application classi�c ation and al-

lows e� cient ident i� cation of Skype  ows. We combine the methods using a Naive

BayesClassi�e r (NBC). Wevalidate theframework wit h experimentson threerecent

datasets|w e apply our methods to the classi� cation of seven popular applications

that useTLS/SSL for security. The results show a very good performance.
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R�esum �e

Le sujet de la classi� cation de tra�c r�eseau est d'une grande importance pour

la plani�c ation de r�eseau e� cace, la gest ion de tra�c �a basede r�egles, la gestion

de priorit �e d'applications et le contrôle de s�ecurit�e. Bien qu'il ait re�cu une atten-

t ion consid�erable dans le milieu de la recherche, ce th�eme laisse encore de nom-

breuses quest ions en suspens comme, par exemple, les m�ethodes de classi�c ation

des ux de tra�c s chi� r�es. Cett e th�ese est compos�eede quatre part ies. La premi�ere

pr�esente quelques aspects th�eoriques li �es �a la classi�c ation de tra� c et �a la d�etec-

t ion d'i nt rusion. Les t rois part ies suivantes t raitent des probl�emes sp�eci�q ues de

classi�c ation et proposent des solut ions pr�ecises.

Dans la deuxi�emepart ie, nous proposons une m�ethode d'�echant il lonnagepr�ecise

pour d�etecter lesattaquesdetype"SYN  ooding" et "portscan". Le syst�emeexamine

lessegments TCP pour t rouver au moins un des mult iples segments ACK provenant

du serveur. La m�ethode est simple et �evolut ive, car elle permet d'obtenir une

bonne d�etection avec un taux de faux posit if proche de z�ero, même pour des taux

d'�echant ill onnage tr�es faibles. Nos simulations bas�ees sur des t racesmontrent que

l' e�c acit�e du syst�eme propos�e repose uniquement sur le taux d'�echant illonnage,

ind�ependamment de la m�ethode d'�echant il lonnage.

Dans la t roisi�eme part ie, nous consid�erons le probl�emede la d�etect ion et de la

classi�c ation du tra� c de Skype et de sesu x de services tels que lesappels vocaux,

SkypeOut , les vid�eo-conf�erences, les messagesinstantan�es ou le t�el�echargement de

� chiers. Nous proposons une m�ethode de classi� cation pour le t ra�c Skype chi�r �e

bas�esur leprotocoled'ident i� cation statist ique(SPID) qui analyselesvaleurs statis-

t iques de certains att ributs du tr a� c r�eseau. Nous avons �evalu�e notre m�ethode sur

un ensemble de donn�eesmontrant d'excellentes performances en termes de pr�eci-

sion et de rappel. La derni�ere part ie d�e� nit un cadre fond�e sur deux m�ethodes

compl�ementaires pour la classi�c ation des  ux applicatifs chi� r�es avec TLS/SSL.

La premi�ere mod�elisedes�etats de session TLS/SSL par une châ�ne de Markov ho-

mog�ene d'ordre 1. Les param�etres du mod�ele de Markov pour chaque application

consid�er�ee di� �erent beaucoup, ce qui est le fondement de la discrimination entre

les applications. La seconde m�ethode de classi�c ation estime l' �ecart d'horodatage

du messageServer Hello du protocole TLS/SSL et l'i nstant d'arriv�eedu paquet .

Elle am�eliore la pr�ecision de classi� cation desapplications et permet l'i dent i� cation
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e� cace des ux Skype. Nous combinons lesm�ethodesen ut il isant une Classi� cation

Naive Bay�esienne (NBC) . Nous validons la proposit ion avec des exp�erimentations

sur t rois s�eriesdedonn�eesr�ecentes. Nousappliquonsnosm�ethodes �a la classi� cation

de sept applications populaires ut ili sant TLS/SSL pour la s�ecurit �e. Les r�esultats

montrent une tr�esbonne performance.
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1.1 Mot ivati ons

"Accurate identi� cation and categorization of network tra�c according to appli-

cation type is an important element of many network management tasks such as

 ow priorit ization, tra� c shaping/policing, and diagnosti c monitor ing." [1]

"Classifying tra� c  ows according to the applications that generate them is an

important task for (a) e�e ctive network planning and design, and (b) monitor ing

the trends of the applications in operational networks." [2]

"Accurate network tra�c classi� cation is fundamental to numerous network ac-

ti viti es, from security monitor ing to accounti ng, and from Quality of Service to

providing operators with useful forecasts for long-term provisioning." [3]

"Thesubject of tra� c classi�c ation hasa crucial importance for e�e cti venetwork

planning, policy-based tra�c management, application prior iti zation, and security

control." (cf. Abst ract)

When reading numerous publications in the domain of t ra�c classi� cation and

int rusion detect ion many of them in the � rst placeemphasize its importancefor op-

erators, Internet Service Providers (ISPs), and local network administrators. How-

ever, for the sake of completeness let us take a look at the problem from a di�e rent,

user's perspect ive. Many of our every day act ivit iesare closely associated with and

dependent on properly working Internet connections. Our daily habits consist of

checking our emails (usually two accounts, i.e. professional and private), reading

online news, etc. Other "crucial" act ivit iesare related to our Facebook and Twi tt er

accounts, daily routine often includes Skype calls. While some of us like online

shopping others prefer di�e rent kinds of entertainment such as online gaming or

watching sport events in the pay-per-view (ppv) system, and many more. Many
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of our daily, legal rout ines would not be possible without research and indust ry

e� orts in the domain of t ra� c classi� cation. This is why this subject has received

substanti al attent ion in the research community and st il l cont inuesto grow.

Tra�c classi�c ation is, however, a challenging taskdue to amassiveproliferat ion

of new applications and new ways of spreading and infect ing unaware, legit imate

users wit h malicious software. Moreover, exist ing programs tend to use more so-

phisticated communication mechanisms to bypasssecuri ty checks. As a result , we

observe a race between illegal applications, such as streaming pirated videos, im-

proving their obfuscation methods and operators searching for new solut ions to

� lt er unwanted tra�c and priorit ize remaining applications. Al though we witness

much research interest in the domain of t ra� c classi� cation and int rusion detecti on,

many issues st ill remain unsolved and even though research communit y �n ds appro-

priate methods, new countermeasures appear rapidly. For example, classi� cation

approachesproposed someyears agoand based on ident ifying network o ws accord-

ing to corresponding ports or regular expressions in unencrypted packet header are

not e�ective any longer due to port randomization and tra�c encrypt ion respec-

t ively.

Some of the problems presented in this thesis arose after extensive discussions

with the administ rator of the campus network at AGH University of Science and

Technology in Cracow, whereassome others appeared from an in-depth analysis of

the exist ing li terature. We further attempt to addresstheseproblemsby designing

proof-of-concept classi�e rs. Where we possibly could, we have evaluated our classi-

� cation methods on real-world datasets captured at edge routers to show excellent

performancein terms of di� erent criteria. Methods presented in the thesis deal with

very di�e rent aspects of t ra�c classi� cation, from network attack detect ion to the

classi�c ation of encrypted applications.

1.2 Overview of t he t hesis

The presented work is divided into four parts composedof densechapters. Each

part of the thesis starts with a short int roduct ion chapter wit h briey described

contribut ions and the list of corresponding publications (if applicable). Moreover,

pract ical parts involve a complementary discussion on theoretical issues speci�c to

the addressed problems. Finally, we briey survey the related work relevant t o each

part of the thesis.

In Part I, we describe some tra�c classi�c ation aspects. We present a tax-

onomy of network t ra�c classi�c ation as well as a short discussion on int rusion

detect ion methods. Part II int roduces an accurate method for SYN o oding attack
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and portscan act ivity detection using sampling techniques to limit t he volume of

inspected data. In the third and fourth part of the thesis, we focus on encrypted

t ra�c classi� cation. In Part III , wedevelop a hybrid methodology basedon  ow and

content features for ident ifying TCP Skype  ows tunneled over the SSL protocol

and classifying its service o ws. In Part IV , we propose a framework for classifying

TLS/SSL  ows of various applications.





Par t I

Stat e of t he A rt
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I nt ro ducti on

The importance of appropriate t ra� c classi�c ation methods conti nues to grow.

They are essent ial for e�ective network planning, policy-based tra�c management,

application priorit ization, and security control. However, t radit ional classi� cation

methods are becoming lesse�ci ent , becausenew applications begin to use sophis-

t icated obfuscation mechanisms and an increased number of applications make use

of encrypt ion to avoid security checks. Moreover, applications are rapidly adapting

to counteract attempts to ident ify certain types of t ra�c , creating new challenges

for t ra�c classi�c ation schemes.

We use the expression tra� c classi�c ation to refer to two areas of our interest

according to speci� c goals, namely to application classi�c ation and intr usion detec-

ti on aswell as to methods of classifying t ra�c data sets based on features passively

observed in the Internet t ra�c . In the following chapter, we discuss the above-

ment ioned aspects of t ra�c classi� cation with respect to classi� cation goals|w e

start with the formal de� nit ion of t ra� c classi� cation, followed by a brief survey

on the classi�c ation and int rusion detection methods. Finally, we int roduce two es-

sent ial concepts of the ground truth and the metrics of classi� cation performance.

2.1 Contr ibut ions of Par t I

The main contr ibut ion of this part is an extension to the payload-based tax-

onomy based on the research presented in the thesis. More speci�c ally, we int ro-

duce a more general taxonomy of payload-based methods in comparison to existing

ones. We propose to distinguish between the type of data to be analyzed rather

than between veri�c ation or processing techniques. We make a disti nction be-

tween message-based and header-based analysis and we separate the analysis of

lower-layer protocol headers, in part icular network and transport layers, from the

application-layer protocol header. We argue that in some classi�c ation problems

the analysis of lower-layer protocol �e lds is su� cient , while in other cases a more

detailed application-layer protocol header analysis is required.
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Background on Tra � c

Cl assi�ca ti on
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3.1 De�ni ti on of Tra � c Cl assi�ca ti on

Tra�c classi�c ation is a research area that helps us to understand the nature

of the Internet t ra�c . It consist of examining IP packets to ext ract somespeci�c

features to answer somequesti ons related to its origin, the carried content , or user

intensions. Frequent ly, it deals with packet o ws de�ned as sequences of packets

uniquely ident i� ed by the samesource IP address, source port, desti nation IP ad-

dress, destination port , and tr ansport layer protocol. However, packets might be

grouped in any way according to classi� cation needs.
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Let us now formalize the tra�c classi�c ation problem. A pattern p represents

the object under analysis. Each pattern is described by a set of n features that

have been derived from the analyzed tra�c . Thus, it can be interpreted by the

n-dimensional random variable X that corresponds to an accurate set of features:

p ! x = (x1; x2; x3; : : : ; xd).

In the application classi�c ation problem, where p could be represented by  ows,

we attempt to assign each of them to one of the given application classes de�n ed by

a random variable Y : y = f y1; y2; : : : ; yc; yc+1 g. Y = yc+1 means that the analyzed

 ow is not recognized as any of the given classes, i.e., it is unknown.

In the intr usion detecti on problem p could be represented by the aggregated

t ra�c directed to the speci�c IP destination address. Thus, int rusion detect ion

refers to a binary classi� cation problem|w e attempt t o verify if the t ra� c to an-

alyze corresponds to malicious behavior. Random variable Y takes values in the

set f y0; y1g, where Y = y0 means that the t ra�c conforms to legit imate behavior,

whereasY = y1 indicates malicious acti vity.

In the presented thesis, solving the t ra�c classi�c ation problems corresponds to

de� ning classi� ers that categorize each pattern into one of c = > 2 classes.

3.2 Cl assi�cat ion Goals

Al though the research area of t ra�c classi� cation is rather speci� c, the motiva-

t ions of research papers are not ident ical [4].

In Figure3.1, wepresent t ypical classi�c ation objectivesor, in other words, three

di� erent domains, where proposed methods operate. More precisely, somemethods

classify t ra�c according to its category, i.e., whether the t ra�c represents bulk-

t ransfer, peer-to-peer (p2p) content sharing, games, mult imedia, web, or att acks [3,

5, 6, 7, 2]. It isalsoreferred to asthecoarse-grained classi�c ation goal [8]. A number

of methods aim at identi fying the application-level protocol such as FTP, HTT P,

SSH, Telnet [9, 1, 10, 11, 12], also referred to as the �ne r-grained classi�c ation goal

[8]. The last group of methods classi� esthe t ra�c according to theexact application

that generates t ra�c , such as Skype, Dropbox, eBay.

Unfortunately, users tend to confuseapplication classi� cation with application -

level protocol classi� cation (cf. Figure 3.1) [13]. For instance,classi� cation of Skype

tra�c ill ust rates the problem. It relies on a p2p infrastructure while its primary

objective is Voice over IP (VoIP) service delivery. Moreover, for data t ransmission

it usesits proprietary Skype protocol, but t he HTT P or HTT PS (HTTP over SSL)

protocols might be used as well. As a result , it might not be clear how to classify

such tra�c . Likewise, due to st rict policies enforced by �r ewalls and restrictions









18 Ch apte r 3. Backgro und on Tr a�c Classi� catio n

� rewalls|i t randomly selects ports and can switch to port 80 or 443 if it fails to

establish a connect ion on dynamically chosen ports. As a result , simple inspection

of port numbers is no longer a reliable classi� cation mechanism [5, 15], especially

when ident ifying applications.

Some recent studies criti cally revisit t ra� c classi�c ation including methods

basedon transport layer ports [16]. One of several insights of their studies is that

ports still remain an important discriminator, part icularly when combined with

other features such as packets sizes,TCP  agsand protocol information. However,

their classi� cation objectivesare di�e rent from those presented in Parts III and IV .

The methods evaluated in their studies aim at application protocol classi�c ation

rather than in detailed application classi�c ation.

Maier et al. investigated the characteristics of resident ial broadband Internet

t ra�c using packet-level t racesaugmented wit h the DSL session information [17].

Their most signi� cant conclusion is that p2p is no longer dominant t ra� c in terms

of bytes. HTTP once more seems to carry most of the t ra�c . Their classi� cation

method was based on a purely port -based approach, showing quite good results

for their dataset. However, for a more detailed analysis aiming at the con� rma-

t ion of the relevance of the port -basedapproach, they have examined the HTTP

Content-Type header and the init ial part of the HTTP body. Moreover, with th is

methodology, they only attempt t o distinguish between p2p and HTTP . Finally,

when analyzing application evolut ion, presented in Figure 3.2, we can observe that

restr icted applications tend to encrypt /t unnel their t ra�c through HTTP S or even

through HTTP (e.g. Skype), which makes classi�c ation of p2p applications a par-

t icularly challenging task.

3.3.2 Payload-based appr oach

The second content -based approach involves inspecting the packet payload and

for years, it wasconsidered asthe most accurate method. As soon aswe can ident ify

a unique payload-based signature, this technique can produce reliable classi� cation

results [5, 7]. Moreover, payload-based classi� ers are often used to establish ground

truth for other methods [16, 18]. Nevertheless, due to privacy issues and payload

encrypti on other techniques have received more attent ion in the research commu-

nit y. We agreewith the primary argument concerning users privacy, but we argue

the common belief that payload-basedmethods always fail when tra� c is encrypted

[13, 4].

Risso et al. int roduced a taxonomy of payload-based classi�c ation approaches

regarding payload veri� cation and processing methods. The former de�nes four de-

grees of veri�c ation. The �r st aims at locating somemessagesignatures, the second
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syntactical one, checks if the messageis well formed, e.g., HTT P payload must con-

tain HTT P headers. The third relates to protocol conformance, controlling client -

server messageexchange, while the semant ic one veri�e s the type of object sent

by the application layer protocol. The second taxonomy discusses payload-based

processing methods, namely packet-based and message-based techniques, from a

simple one that operates by checking some basic packet-header information to a

sophist icated one that consists of inspecting and interpreting exactly what each

application tr ansmit s.

In th is thesis, we propose a more general taxonomy of payload-basedclassi�-

cation concerning the type of data to be analyzed rather than veri�c ation or pro-

cessing techniques. We proposeto make a disti nction between message-based and

header-basedanalysis asshown in Figure 3.3. Moreover, we proposeto separate the

analysis of lower-layer protocol headers (unt il t ransport layer) from the application-

layer protocol header since in some classi� cation problems, the analysis based only

on network and transport layer �e lds is su�ci ent , while in other cases, a more

detailed application-layer protocol header analysis is required.

The method presented in Part II of this thesis illustrates an example of lower-

layer protocol header analysis|w ehaveproposeda scheme for detect ing SYN o od-

ing attacks and portscans that is based on ident ifying TCP SYN segments and cor-

responding ACKs. Furthermore, Sen et al. [7] presented an approach to ident ify

the eDonkey protocol based on the application layer header analysis. More specif-

ically, the authors discovered that signaling and downloading TCP packets have

a part icular eDonkey header on top of the TCP header. In the same paper, the

authors proposea simple signature to reveal the Kazaatra�c based on the analysis

of the HTTP protocol. Now, let us consider TLS/SSL encrypted t ra� c. Indeed,

both messageand "old" application layer protocol header are encrypted so simple

pattern veri�c ation methods based on signatures will fail. In Part III and IV of this

thesis, we adopt a payload-based approach to demonstr ate that it is st ill possible

to e� ectively reveal and classify encrypted o ws by inspect ing "new" application

layer protocol, namely TLS/SSL. Moreover, Bon� glio et al. have investigated the

Skype tra� c t ransported by the UDP protocol [18]. They concluded that the en-

crypted Skype UDP messages can be ident i� ed by examining the init ial port ion of

the payload the so-called Start of Message(SoM) located on top of the header.

3.3.3 Ho st behavior-ba sed appr oach

Host behavior-based approaches[2, 19] can potent ially addresssomelimitations

of content -based methods. The approach is based on the analysis of the social

behavior of network hosts and can be observable even when payload is encrypted.



20 Ch apte r 3. Backgro und on Tr a�c Classi� catio n

More speci� cally, social interacti ons between communicating hosts are represented

by graphs that visualize the "who-talks-to-whom" relationship. The classi� cation

consists of matching previously observed graphs with graphs result ing from the

behavior of a host under examination [2].

BLINC , for example, proposes an interest ing method based on observing and

recognizing models of host behavior and then classifying it s  ows according to the

models [2]. It analyzes patterns at three levels: (i) social level|i t inspects the

interact ion wit h other hosts, (ii ) functional level|it checks whether a host acts as

a consumer or a provider of the service (or both), (iii ) application level|i t records

the t ransport layer ports to identi fy the origin of the application.

Il iofotou et al. int roduce the idea of Tra� c Dispersion Graphs (TD Gs) as a

promising monitoring and classi�c ation tool [19]. Their work on TD Gs represents

a natural extension of the previous approach. More precisely, they proposea di�er -

ent way of looking at network t ra�c |t hey focus on network-wide interactions of

hosts instead of modeling single host behavior. The sameauthors extended their

previous work and developed a proof of the concept t o detect p2p tra�c [20]. Their

application classi� cation framework, evaluated on real-world backbone traces, can

ident ify 90% of p2p o ws with 95% precision.

3.3.4 Flo w feat ure -based appr oach

The second fundamentally di�er ent group of content independent methods uses

 ow features such as averagepacket sizes, packet inter-arrival ti mes, or  ow dura-

t ions(cf. Section 3.5). Featuresare computed over mult iplepacketsgrouped in o ws

and furt her usedin the t raining process that associates sets of featureswith known

tra�c classes. The classi� cation consists of a stat ist ical comparison of unknown

tra�c wit h previously learned rules [21]. Flow feature-based approaches mainly

include data mining techniquesand machine learning algorithms. We do not, how-

ever, describe these techniques when discussing approaches based on the analysis

of o w features because more and more other approaches including content -based

ones use machine learning in classi�c ation purposes. Instead, we brie y discuss

classi�c ation methods in Section 3.4.2.

For example, Bon� glio et al. [18] presented a framework based on two com-

plementary techniques to reveal Skype tra�c . The second approach is based on a

stochast ic characterization of Skype tra�c in terms of the packet arrival rate and

packet length, which are used as features of a decision process based on a Naive

Bayesian Classi� er (NBC) .

Moore et al. [3] proposed a statistical approach to classify t ra�c into di� erent

types of servicesbased on a combination of o w features such as  ow length, t ime
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between consecut ive  ows, or inter-arrival t imes. The classi� cation processusing

a bayesian classi�e r combined with a kernel density est imation method leads to an

accuracy of up to 95%.

3.4 Metho ds

While machine learning algorithms using o w features for t ra�c classi� cation

received substant ial attent ion, the content-based approachesmainly relied a simple

pattern matching [13]. In recent studies, however, several hybrid solut ions basedon

machine learning methods and taking into account content featureswere proposed

[22, 23, 18, 24, 25, 12]. In this sect ion, we present a brief survey of somepopular

methods (cf. Figure 3.4) usedin classi�c ation approaches discussedin the previous

section.

3.4.1 Patt ern Ma tchi ng

A few years ago, simple pattern matching combined with content -based ap-

proaches was one of the most accurate classi� cation methods. However, pattern

matching based on ident ifying the application level signatures is lesse�ective (if

possible) in the case of encrypted t ra�c . In one of the most interesting papers

considering the pattern matching problem in recent years [7], the authors provide

an e� cient method for ident ifying � ve popular p2p applications through applica-

t ion level signatures. Al l of the proposed signatures, however, become uselessonce

tra�c encrypt ion or tunneling methods are applied. Risso et al. [13], argue that

content -based approaches aremainly based on pattern veri�c ation, thus they always

fail in the caseof encrypted tr a�c and often in the caseof tunneled t ra�c. We

argue, however, that a key challenge in encrypted t ra�c classi� cation is to replace

t radit ional pattern veri�c ation with moresophist icatedmethods basedon statistical

� ngerprints.

3.4.2 Ma chine Learni ng

In the last few years, machine learning algorithms using o w featuresfor tr a�c

classi�c ation hasreceived substant ial attenti on [26, 27, 16, 3]. More recent ly, several

authors have investigated the useof machine learning techniques with payload in-

formation [22, 23, 18, 25]. In general, machine learning algorithms are categorized

into supervised learning and unsupervised learning (cf. Figure 3.4). Supervised

learning requires some labeled data to generate models of applications of interest,

whereasunsupervised learning clusters  ows with similar characteristics. Since our
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This section provides only some insight into methods used in the thesis. The

formal de� nit ions are presented in relevant chapters.

3.5 Featur e Select ion

As it washighlighted in the previoussect ion, the majority of t ra�c classi� cation

methods usesomeform of machine learning techniquesto build t ra�c models from

observed data. They share the general idea of measuring the distance of new ob-

jects from the learned models that represent part icular t ra�c classes. In practi ce,

however, the e�e ctiveness of t ra�c classi� cation frameworks strongly depends on

the choice of t ra�c attri butes or features. Two families of features have recent ly

beenused for t ra�c analysis. The � rst one consists of the in-depth analysis of the

packet content , whereasthe second one relieson  ow-level statist ics.

Various packet content features have beenapplied to t ra�c classi� cation, such

as an IP address[31, 32], a t ransport layer protocol [33], a packet ( payload) size

[33, 34, 35, 36, 37, 38], or part icular valuesin TCP and UDP headers [31, 18], for ex-

ample, a port number [5, 3, 39, 40, 41] and TCP  ags[42, 43, 44, 45, 32, 41]. While

packet header based featureshave proved to be e� ective in t ra�c classi� cation and

against some network attacks, other classi� cation problemsrequire more advanced

payload processing techniques. Thus, Deep Packet Inspection (DPI) methods have

beenproposed to create some payload-based signatures based on an in-depth anal-

ysis of application layer data [23, 18, 22, 5, 2, 46, 18]. Moreover, features based

on the relationship between various metrics have been applied in many classi� ca-

t ion problems [23, 22, 2]. For example, the detecti on methods based on matching

TCP control segments such as SYN and FIN (or RST) pairs have been proposed

in int rusion detect ion [42]. Furthermore, the approach based on the relat ionship

between the number of dest ination IP addressesand ports for speci�c applications

per source IP has beenproposed in t ra� c classi� cation [2].

On the other hand, researchers propose the use of o w-level features, such as

 ow durat ion [33, 3, 27, 47], a number of packets per o w [33, 31, 32], a variance

and/or an average,minimum, maximum value of inter-arrival t ime [33, 31, 34, 18, 3,

26, 48, 27, 47, 49, 50], packet (or payload) sizes per  ow (or per few � rst packets of

the  ow) [31, 51, 18, 2, 3, 26, 52, 27, 49, 50], a bit rate [51, 35], a round-t rip t ime [35],

a  ow size[3, 27], or t ime between consecut ive o ws [3]. Moreover, joint application

of somemetrics have been proposed, for example, dist ribut ion of  ow duration and

number of packets t ransferred [53], or directi on and packet size distribut ion [22].

In the second part of this thesis, we propose a scheme that relies on the simple

and robust packet header feature based on matching TCP SYN segments to at least
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one of mult iple ACK segments coming from the server side. In Part III , we present

a hybrid method that combines t ra�c  ow features with complex DPI elements

to ident ify Skype service o ws (cf. Sect ion 9.1.2). Finally, the last part de�nes

a framework based on two complementary methods applying payload features for

classifying application  ows encrypted with TLS/SSL. The � rst proposedMarkov

Classi�e r takesinto account messagetypesin a TLS/SSL session as a classi�c ation

feature while the second classi�e r considers the deviation between the t imestamp

in the TLS/SSL Server Hello messageand the packet arrival t ime.

A common problem in the domain of t ra�c classi�c ation is to decide among

di� erent features to be used. The feature selection can be done manually, but a

better st rategy is to have a learning algorithm that decides which set of features

is the best. The problem of automatic feature selection has been well studied in

the context of t ra�c classi�c ation [54, 55, 56, 57] and anomaly detection [58]. In

the third part of this thesis, we face the problem of select ing an appropriate subset

of features called attri bute meters. We applied a method called forward selecti on

basedon the Analysis of Variance (ANOVA) [59]. It consists of start ing with an

init ial att ribute in the model t rying att ributes one by one, and adopt ing them, if

they improve the classi� cation performance.

3.6 I ntr usion D etecti on

In this section we focus on a special caseof t ra�c classi�c ation, namely on in-

t rusion detection. At � rst sight , the main di�er ence between intr usion detect ion

and, for instance, application ident i�c ation is the number of t ra� c classes consid-

ered in the classi� cation process (cf. Section 3.1). Moreover, in terms of tr a�c

classi�c ation goals discussed in Section 3.2 the objective of int rusion detect ion is

to categorize t ra�c as either int rusive or legit imate. Nevertheless, the crucial im-

portance of network security resulted in decoupling int rusion detection from tra� c

classi�c ation.

Two detection approaches have received substant ial attent ion in the research

community, namely signature-based and anomaly-based detect ion. Al though, they

are opposite in nature, they share a common drawback|t hey require an in-depth

knowledgeof network t ra�c to be e�ective. Therefore, they are collect ively referred

to as knowledge-based detection approaches [60]. A relat ively new research area in

int rusion detection that can potent ially overcomethe limitationsof knowledge-based

approachesrelieson unsupervised anomaly detect ion. In the rest of this section, we

briey discuss threeapproachessummarized in Figure 3.5

The signature-based approach [61] requires an extensive knowledge of security
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Section 5, we focus our attenti on on more speci� c problems we had to face when

proposing a scalable anomaly-detection sampling scheme of high-volume malicious

t ra�c composedof SYN  ooding attacks and low-volume portscan activit y.

3.7 Gro und Truth

The appropriate set of pre-labeled packet t racescontaining the so-called ground-

tr uth information is one of the key aspects in any classi� cation problem. The two

most popular approaches employ the following procedures. The � rst one consists of

the manual generation of Internet t ra�c by running a broad pool of applications on

many machines. Nevertheless, such a dataset might not cover realistic application

instances and tra�c characteristics due to the lack of live, human interactions.

The second approach assumesassigning t ra� c labels to all  ows by means of DPI

methods after packet capturing. However, simple pattern-matching techniquesare

not reliable anymore due to many obfuscation mechanisms and tra�c encrypt ion.

Moreover, most of the exist ing methods deal with ground-t ruth  ow labeling in

the protocol domain [1, 16]. A recent ground-t ruth classi�e r that could potenti ally

ful� ll our requirements is based on a pre-installed client t ool to supervise a kernel of

each monitored host [69]. Even if the presented results are very promising, we need

to �nd a number of users who consent t o be monitored with the classi�e r. Finally,

the same authors compare some previous methods based on the joint port analysis

and payload inspection [70]. The experimental results demonstrate that, in many

cases, the ground-t ruth data provided is incorrect. In this thesis, we do not rely on

any of the systematic solut ions presented above. Instead, we try to develop ad hoc

methods that meet our current classi� cation needs.

The second dataset used in the evaluation process in Part II has beencollected

on the link connect ing an operational university campus network at the AGH Uni-

versity of Science and Technology in Cracow to the Internet. We have manually

generated somenetwork att acks by the useof common attacking programsavailable

in BackTrack linux securit y distribut ion [71] against servers set up especially for this

purpose. The tra�c has been captured on the border router that monitors packets

generated in the controlled part of the network. The methodology is reliable in

obtaining the ground-t ruth data, but , in addit ion, it enables us to take advantage

of rich background tra�c generated by students including recent p2p applications

as well as standard services like web, ftp, or mail.

In Part III , we had to face even more challenging tasks, namely, generat ing

and labeling Skype service o ws. Manual generation of each service separately in

a closed laboratory environment enabled us to e�ec t ively obtain the ground-t ruth
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information. It wasparti cularly di� cult due to the p2p nature of Skype result ing in

spreading serviceson several TCP connect ions. Another challengewas to manually

dist inguish between service  ows and the corresponding signaling Skype tra� c.

To establish the ground truth in the third part of this thesis, we have developed

a simple Domain Name System Classi�e r (DNSC) to ext ract encrypted application

 owsaccording to their domain names. Morespeci� cally, DNSC matcheshostnames

to signatures of well known applications, such as opera in case of Opera or twit ter,

twttr in case of Twitt er. The solut ion presents the number of constraints like

a rather limited classi�c ation scope. For example, we cannot label Skype  ows,

because in general, we are not able to convert IP addresses to domain names.

On the other hand, if the mapping between an IP address and a domain name is

possible, the method can classify  ows with a very high con�d ence level.

3.8 Cr it eri a for Cl assi�cat ion Perf orm ance

To evaluate any classi� cation method we needto de�n e criteria for classi�c ation

performance. In this sect ion we discuss the metrics we use to quant ify the perfor-

mance of our classi� ers, namely the False Posit ive Rate (FPR), the True Posit ive

Rate (TPR), which is also known as Recall, and Precision. They are de�n ed as

follows:

F PR =
F P

F P + TN
; (3.1)

TPR = Recall =
TP

TP + F N
; (3.2)

Pr ecision =
TP

TP + F P
(3.3)

The following metrics are buil t upon the concept of True Positi ves (TPs), True

Negatives(TNs), False Posit ives, (FPs), and False Negatives (FNs). Thesenotions

are often used in anomaly detecti on and tra�c classi� cation where each object is

placed into one of several classes.

To give the reader intuit ion about t hestatistical metrics to beused in this thesis,

let us make an analogy. Supposewe want t o make a blind test of beer recognit ion

to test the knowledge of beer according to the brewing process. We classify them

into two categories, i.e., either lager or ale. We select a set of 100 beers|60 of

theseare lagers, whereas40 represent ale. Let us assume that you have classi�e d

70 beers as being lagers. Actually, 50 of these are lagers, which correspond to the
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number of True Posit ives, but 20 are ales, which represent t he number of False

Posit ives. Moreover, you categorize 30 beers as ales. Of these, 10 represent in

fact the lager type, whereas20 of them are indeed ales. Let us focus on the lager

type. True Posit ive Rate (or Recall) is the number of beers correctly categorized

as lager divided by the total number of beers that are actually lagers|y ou have

TPR = Recall = 50=(50+ 10) = 0:833. Moreover, FalsePosit iveRate is thenumber

of falsely classi� ed beers as the lager type to the total number of non-lager beers,

F PR = 20=(20 + 20) = 0:5. A complementary measure to Recall is Precision, that

is the number of correctly classi� ed lager beers to all beers classi� ed as the lager

type, thus, Pr ecision = 50=(50 + 20) = 0:714.

To assess the performance of the proposed classi� cation methods in the second

and fourt h part of the thesis we use True Positi ve and FalsePosit ive Rates as clas-

si� cation metrics, whereasin Part III we use Precision, Recall, and F -M easure as

classi�c ation metrics. F -M easure, which combinesPrecision and Recall, is de� ned

as:

F -M easure =
2 � Pr ecision � Recall

Pr ecision + Recall
; (3.4)

For more speci� c examples, pleaserefer to the respective sections describing the

criteria for classi� cation performance of each proposed method.

3.9 Summ ary

So far, we have int roduced some background information on tra�c classi�c a-

t ion important to understand methodologiesproposed in this thesis. In Table 6.1,

we present t he summary of the discussed issuesaccording to the further described

solut ions. In the remaining parts of the thesis, we � rst proposean accurate sam-

pling scheme for defeating SYN  ooding attacks and TCP portscans, while in the

two following parts we propose two frameworks for classifying application  ows in

encrypted t ra�c .
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Table 3.1: Summary of t ra�c classi� cation issues according to proposed so-

lut ions

Research area Tra�c classi� cation

Sub-domain Application classi� cation Int rusion detection

Proposed solut ions

Classifying Classifying A sampling scheme

service  ows TLS/SSL for detecting

in the encrypted encrypted SYN o oding attacks

Skype tra�c application o ws and portscans

Classi�c ation goals Application Application Category

Hybrid: header- Header-based Header-based

Classi�c ation (L7 protocol (L7 protocol (L2-L4 protocol

approaches header) &  ow header) headers)

feature-based

SupervisedML: SupervisedML: Anomaly-based:

SPID algorithm K-L Div. & Rate limit ing

Methods basedon Markov Chain & method

Kullback-Leibler Naive Bayes

Divergence

Packet size, Messagetypes Rate of TCP SYN

direction, byte and t imestamps to ACK segments

Features frequencies, from a TLS/S SL

byte pairs session header

reoccurr ing, etc.

Manually University University

Ground truth/ generated  ows campus campus datasets

datasets in a closed datasets pre- with manually

laboratory labeled with generated attacks

environment DNSC classi�e r

Performance True Posit ive and Precision, Recall, True Posit ive and

Metrics FalsePosit ive and F-Measure FalsePosit ive

Rates Rates
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Distributed Denial-of-Service (DDoS) attacks and portscanactivit y strongly in-

 uence Internet security. According to a NANOG report [72], the major cause of

denial of service attacks is TCP SYN  ooding that consists of sending many SYN

segments from a large number of compromised computers. It prevents victim ma-

chines or even whole subnetworks from o� ering a service to their legit imate users.

A portscan activity is usually a precursor for an int rusion attempt |a compromised

computer sends multi ple SYN segments to probe other hosts for open ports to gain

control over more computers that become potent ial att ackers. SYN  ooding and

portscans di�e r in terms of intensit y, behavior, and securi ty threats so usually they

arehandled independent ly. However, both typesof t ra�c exploit the inherent asym-

metry in the TCP three-way handshake mechanism and the fact that the vict im

cannot authent icate TCP SYN segments it receives. As a result , malicious packets

can easily reach the victim wit hout its approval.

Among various defensemechanisms, SYN o oding detection mechanisms placed

in border routers have received much attent ion in recent lit erature [42, 43, 44, 73,

74]. Al l these methods take advantage of the relat ionship between TCP control

segments responsible for connect ion establishment and release. However, they all

may fail when routerssampletr a� c by inspect ing only somepackets. E�ci ent t ra�c

monitoring requiresadvanced sampling techniquesto limit t he volume of inspected

data. Sampling consists of parti al observation of the network t ra� c and drawing

conclusions about t he whole behavior of the system. Detecting DDoS attacks and

portscans becomesmore di� cult when routers sample packets.
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4.1 Contr ibut ions of Par t II

In th is part , we propose a novel and scalable sampling detection scheme of high-

volumemalicioust ra�c composedof SYN  ooding attacks and low-volumeportscan

activity. The scheme examinesTCP segments to �nd at least one of mult iple ACK

segments coming from the server. In this case, it concludes that the connection

was successfully established so its opening SYN segment was not a part of a SYN

 ooding attack or portscan act ivity. This principle is part icularly suitable when

routers sample packets wit h very low rates. We combine the proposed method wit h

a rate limit ing schemethat controls t ra�c rates and compare with threeother rep-

resentat ive detection methods. We show that our method achieves a high attack

detect ion rate (True Posit ive Rate). In comparison with exist ing methods, we sig-

ni� cant ly reduce the FalsePosit ive Rate, i.e., when legiti mate packets are classi� ed

as malicious ones.

We also study the impact of threebasic packet sampling techniques proposed by

PSAMP IETF working group [75] on our detection scheme. The result s reveal that

even the simplest and the most commonly used sampling technique| systematic

sampling also known as deterministic sampling [76], performs fairly well under low

sampling rates when combined wit h our detect ion and rate limit ing method. Unlike

someother proposals that usednetwork simulations or experiments on obsolete data

sets with outdated background tra�c, we validate our scheme on two recent data

sets of network t races captured during real network attacks.

4.2 Relevant Publ icat ions for Part II

[45] Maciej Korczy�nski, Lucjan Janowski, and Andrzej Duda. An Accurate Sam-

pling Schemefor Detecting SYN Flooding Att acks and Portscans. 2011 IEEE

International Conference on Communications (ICC'11), pages1{5, June 2011

[77] Maciej Korczy�nski and Lucjan Janowski. Implementat ion of The Algorithm

to Detect and Prevent Network Att acks Based on Rate Limit ing Method.

Conferenceon Next Generation Services and Networks - the Technical Aspects,

Application and Market, November 2010

[78] Gil les Berger-Sabbatel, Maciej Korczy�nski, and Andrzej Duda. Ar chit ecture

of a Platform for Malware Analysis and Con� nement . 3rd INDECT/I EEE

International Conference on Multimedia Communications, May 2010

[79] Karol Adamski, Maciej Korczy�nski, and Lucjan Janowski. Trace2Flow. 3rd

NMRG Workshop on Net ow/I PFIX Usage in Network Managament, 2010
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5.1 Ana ly zing T CP Connecti ons

Analyzing TCP connect ions is oneof the most important issuesto addressin the

case of SYN o oding attacks and portscans. To open a connection, a client sends

an init ial SYN segment . Upon its recept ion, the server allocates some resources

in the backlog queue and replies with a SYN/A CK segment. Finally, the client

returns an ACK segment ( further called Client ACK ) t o complete the three-way

handshake. Then, communication goes on unt il the client or the server sends a

segment with the FIN  ag set, a RST segment , or the connecti on t imes out. The

potenti al for exploit ing this behavior for denial of service lies in the early allocation

of the server resources. During a TCP SYN  ooding attack, the attacker generates

mult iple SYN requests without sending the Client ACK to complete the connection

establishment . The requests can quickly exhaust t he server memory so it cannot

accept more incoming connection requests.

SYN scanning is fairly similar to TCP SYN o oding attacks: an attacking

computer t riesto ident ify vulnerable hosts by sending mult iple TCP SYN segments.

If a port is open, the server responds with a SYN-A CK segment, the port scanner

completes the three-way handshake and immediately closesthe connection with a

RST segment .

Several authors proposed interest ing detection methods that can operate in bor-

der routers to detect attacks and block them near their sources[42, 43, 44, 73, 74].

They take advantage of the relationships between the TCP control segments: the

appearance of a SYN segment impliesfurther SYN/A CK, Client ACK, and FIN or

RST segments. However, if wewant t o apply sampling at border routers of Int ranets

or parts of operator networks for improved monitoring e�c iency, considering only
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a small part of packets may degrade the detect ion capacity of all existing methods,

becauselow probabil it y of sampling essent ial cont rol segments is fairly low. For in-

stance, without sampling, the ratio between SYN/A CK and Client ACK segments

should be around 1 for regular t ra�c while it may be di�er ent when routers use

high sampling rates. Becauseof this sampling e� ect, the existi ng methods result in

poor detection performance especially with respect to the FalsePosit ive Rate.

5.2 Sampli ng Techni ques

We consider three basic and most commonly used count-based sampling tech-

niques: systematic, random 1-out-of-N, and uniform probabil ist ic sampling (cf. Fig-

ure 5.1) proposed by the PSAMP IETF working group [75] and thoroughly investi-

gated in the li terature [80]. They present t he advantageof simple implementation

with low CPU and memory requirements.

Systematic sampling takes every N-th packet, whereasrandom 1-out-of-N sam-

pling randomly chooses onepacket in every bucket of sizeN. Finally, uniform proba-

bil istic sampling analyzes every packet with the samesmall probabili ty. Systematic

sampling, also known as deterministic sampling, is usually usedin current network

devices, one example being the Cisco Net o w protocol [76].

Somepreviouswork addressedtheproblem of how sampling techniques inu ence

the anomaly detection process [81]. The authors focused on portscananomalies and

evaluated some representative anomaly detecti on techniques. Later, they extended

this work and examined various kinds of sampling methods wit h respect to volume

and scanning anomalies [82]. They concluded that packet sampling can int roduce

a fundamental bias by changing t ra� c features and they pointed out the need for

better measurement t echniques. Other authors considered the impact of sampling

methods on various detection metrics examined on traceswith TCP SYN  ooding

attacks [80]. Their result s reveal that systematic sampling does not perform well

under low sampling rates when the detection processdepends on speci� c packet

characteristicslikeTCP ags. Our detection schemealso overcomesthe limitation of

systematic sampling and it becomes asappropriate method asother more enhanced

sampling techniques.
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6.1 Pr inci ples of t he D etecti on Scheme

To overcome the limitations of methods that match pairs of TCP control seg-

ments, we propose a novel method not limited to the analysis of the three-way

handshake or connection termination. To make it insensit ive to sampling, we pro-

poseto �nd at least one of mult iple ACK segments coming from the server instead

of looking for a single control segment like SYN/A CK, Client ACK, FIN, or RST.

In other words, to detect legit imate established connections, we take advantageof

the fact that all segments originated from the server with the ACK  ag set on and

the SYN ag set o� indicate a successfully established connection. Obviously, when

we sample packets, the probabili ty that the sampled packet contains one of mult iple

ACK segments coming from the server is much more greater than when we try to

detect a SYN-SYN/A CK pair. Thi s approach decreases the False Posit ive Rate
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and does not inu ence the True Posit ive Rate, because in the caseof SYN o od-

ing attacks as well as portscans, there are almost no corresponding ACK segments

coming from the server. Finally, it is impossible for the attacker to avoid detection

by spoo� ng control segments.

The proposed schemeis placed in a border router that monitors packets gener-

ated in the controlled part of the network (e.g. an Int ranet or an enterpriseLAN)

to con� ne the possible malicious act ivity close to the source of an attack. It is

composed of three modules: the � rst one validates outgoing TCP segments, the

second one processes corresponding control segments, while the third one changes

the packet � lt er list if needed.

We combine the method wit h a rate limit ing scheme. If the t ra�c rate is less

than or equal to a prede�ned rate for a given IP address, it is allowed to passthe

� lt er of outgoing t ra�c , whereast ra�c that exceeds the rate is dropped or delayed.

We provide a detailed descript ion of the proposeddefensescheme below.

6.1.1 TCP H isto ry Check

For each sampled packet, we extract its source and desti nation IP address and

place them in the SourceIP List (SIPL) and the Destination IP List (DIPL) , respec-

t ively. We also ext ract other information such as t imestamps, sequence numbers,

and ACK sequence numbers. When the router samples any outgoing TCP SYN

segment , the module checks if a t imeout has elapsed. Depending on the result , it

either resets the source and destination IP lists and allows the segment t o pass or

it increases request counter Rsr c corresponding to the part icular source IP address

by a posit ive integer. If there are more unacknowledged SYN segments originating

from the speci�c sourceIP address and Rsr c > Rmax
sr c , then this module decides that

the segments are parts of portscan activity and inserts the source IP address in

the �l ter blacklist. Moreover, the module increasesrequest counter Rdst by a posi-

t ive integer for a part icular destination IP address. If Rdst > Rmax
dst , it means that

there is an excessive number of connections to the destination address. Then, as

this behavior may indicate host scanact ivity or a SYN  ooding attack, the module

updatesthe � lter blacklist to block packets that follow.

6.1.2 TCP Valida tio n Check

The goal of this module is to overcome the problem of losing someuseful in-

formation because of sampling. It analyzes TCP control segments to determine

whether the three-way handshake was successfully completed. Any incoming seg-

ment from the server side with the ACK ag set and SYN  ag disabled indicates
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Table 6.1: Summary of packet t races

Trace Att ack ratio in packets/sec (%)

SYN o oding 4000packets/sec (20%)

Host scan 120 packets/sec (9%)

Network scan 80 packets/sec (5%)

Clear1 0 packets/sec

Clear2 0 packets/sec

that the part icular connection has been successfully established. In this case, the

module decreasesthe Rsr c (Rdst ) counter, because the connection becomes legiti -

mate. Consequent ly, the requirement Rsr c > Rmax
sr c (Rdst > Rmax

dst ) might not be

valid any more, so the module will eventually update the packet � lter blacklist t o

permit further outgoing TCP requests from/t o the speci� ed IP address.

6.1.3 Fil te ri ng

This module appliesall changesto the Access Control List (ACL) in the border

router so that it will discard all malicious segments.

6.2 Evalua ti on Result s

To evaluate the method and compare it wit h the previous work, we have devel-

oped a prototype in the Matlab environment . We use the open source TracesPlay

program [83] to read tracesand to directl y put the required data into Matlab.

6.2.1 Da ta set Descr ipt ion

We have validated our scheme by meansof t race-driven simulations on two data

sets: the � rst t races were gathered on an operational university campus network

at the National Technical University of Athens (NTUA) with an average tra�c of

70-80Mbits/sec and 20000packets/sec. It contains a Distributed Denial of Service

attack (TCP SYN o oding attack) captured on May 21, 2003against a single host

inside the NTUA campus. The second set hasbeen collected on the link connect ing

an operat ional university campus network at the AGH University of Science and

Technology in Cracow with a limit of 45 Mbits/s for incoming and 22 Mbit s/s for

outgoing t ra�c. In the evaluation presented in this thesis, we have used set of four

t racescollected on March 24, 2010containing host scans and port scans originated

from the campus network as well as packet t races without malicious activity (cf.
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Table 6.1). Moreover, t races contain rich background tr a�c including recent p2p

applications as well as standard services like web, ft p, or mail. Note that all t races

are bidirectional. We consider them as a meaningful set of t races|i f the data set

is not recent , we cannot t rust evaluation results especially when we consider the

FalsePosit ive Rate because of unrealistic background tra�c (new applicationshave

di� erent t ra�c characterist ics from old ones). Some previous work proposed other

detect ion algorithms [84, 85], unfortunately the evaluation process uses outdated

data sets.

6.2.2 Cr it eri a for Det ecti on Performance

We consider two meaningful metrics to evaluate the performance of detection

methods: the True Posit ive Rate (TPR) and the False Posit ive Rate (FPR) (cf.

Eq. 3.1 and 3.2). Such rates are usually presented as the Receiver Operat ing

Characteristics (ROC) curve by plot t ing TPR as a function of FPR. As att ack

detect ion isa Booleanact ion, theROC curveis useful for network operators, because

it indicates how to �nd the right t radeo� between the False Posit ive and True

Posit ive Rates. However, in our evaluation, we have separated both values and

presented them as a funct ion of the sampling rate, because the evaluation is also

basedon tracesthat do not contain malicious activit y.

6.2.3 Compa ri ng wi th Ex ist ing Detect ion Schemes

To evaluate our scheme, we have compared it with other three representative

detect ion schemes that leverage TCP relationships: SYN-SYN/A CK, SYN-F IN,

and SYN-Cl ient ACK. The key point of schemesbased on matching SYN-SYN/A CK

and SYN-Client ACK pairs is the needof �nd ing the corresponding SYN/A CK or

Client ACK segment after the � rst SYN segment . The t ime interval between them

is the RTT (Round Trip Ti me), usually less than 500ms for more than 90% of

connections. Therefore, the methods have to inspect all cont rol segments during

at least this interval to conclude that the connect ion was successfully established.

The detection methods based on matching SYN-FIN (or RST) pairs, simply waits

for the corresponding FIN (or RST) segment .

6.2.4 Cali bra tio n Pr ocess

We had to face the problem of sett ing the right rate limit ing thresholds, i.e.,

maximum valuesof the request counters corresponding to a regular t ra�c pattern.

We have calibrated them for every examined trace in order to achieve a high TPR

with no FPs regardlessof the detect ion method when we analyze all packets.
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Table 6.2: Rate limit ing thresholds obtained during the calibration process

for part icular t races.

Trace Rmax
sr c (packets) Rmax

dst (packets)

SYN o oding 200 1300

Host scan 300 100

Network scan 400 240

Clear1 50 170

Clear2 120 90

The calibrated values (cf. Table 6.2) ree ct the relation between outgoing SYNs

per destination and per source and corresponding control packets (SYN/A CK,

Client ACK, FIN) . In long-term regular condit ions, the TCP semant ics requires

a one-to-one match between TCP requests and control segments. Nevertheless,

in reality there is always quite huge di�er ence between the number of SYNs and

SYN/A CK, Client ACK or FIN packets. Nowadays, the major cause of this dif-

ference is the legit imate p2p tra�c that init iatesTCP connect ions to unreachable

seeds. We have empirically found that the rate limit ing thresholds expressed in

packets are directly proport ional to the sampling rate, which alleviates the problem

of losing potent ially useful data during the sampling process.

6.2.5 I nuence of the Sampli ng Pr ocess on Di �er ent Detect ion
Schemes

In our experiments, we have evaluated the inu ence of uniform probabilistic

sampling on the proposed method and compared it wit h other three schemes. We

have decided to choosethis part icular sampling method, because it is claimed to be

more e�ec t ive in the process of packet select ion compared to systematic sampling

[80].

We have repeated all simulat ions to obtain 95% con� dence intervals computed

according to the bootstrap method [86].

As shown in Figure 6.1, all methods present approximately the same high TPR

and very low FPR in case of TCP SYN  ooding attacks. Similar results for all four

methods are due to sett ing high rate thresholds corresponding to regular t ra�c for

this part icular t race. As we can observe, TPR curves of all detect ing schemes are

similar unt il 0.008% when sampling process increases randomness in the results.

As far as FPR is concerned, we can see that SYN-SYN/A CK, SYN-FIN, SYN-

Client ACK methods deviate from our scheme, but di�e rencesare insigni�c ant . For
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6.3 Rela t ed Work

We can observe that our results overcome the problems considered in the lit er-

ature [80] in which the authors evaluated the impact of the same three sampling

methods on anomaly detection techniques. They conclude that methods that rely

on systematic sampling are the worst choice for the detect ion of attacks based on

certain TCP control ags like SYN or FIN, because such segments are not evenly

dist ributed across t ra�c . Our scheme alleviates the problem of sampling SYN-

SYN/A CK, SYN-F IN and SYN-Cl ient ACK pairs and proposes a novel solut ion

basedon considering ACK segments.

To detect and mit igate scanning activity, SYN  ooding, and DDoS attacks,

several authors proposed various methods [87, 88, 89, 90]. The end-host method

basedon SYN cookies is the most commonly usedtechnique to protect against SYN

 ooding attacks [91]. Nevertheless, SYN cookies are not able to encode all TCP

opt ions, in part icular the window scale and select ive acknowledgements that are

widely supported and serve to signi� cantl y improve TCP performance. Moreover,

the method does not overcome the problem of bandwidth consumpt ion in case

of high-volume TCP SYN attacks. Consequent ly, we have focused on SYN o od

methods located in border routers [42, 43, 44, 73, 74] and we designed a novel

scheme insensit ive to sampling.

6.4 Conclus ion

We have proposed a novel scheme for detecting TCP SYN  ooding attacks

and portscans that o� ers good performance in the caseof sampling. The scheme

considers TCP connections aslegit imate if it samples one of mult iple ACK segments

(with disabled SYN ag) coming from theserver. This di� ers from existing methods

basedon pair matching of control segments SYN/A CK, FIN (RST) or Client ACK

etc. Our t race-basedsimulat ions show that unlike other techniques, the proposed

method signi� cant ly decreases the False Posit ive Rate under a sampling process.

Moreover, the result s reveal that our method alleviatesthe problem of losing some

information when systematic sampling is used. The e�ectivenessof the presented

method only relies on the sampling rate and not on the type of a sampling method.
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Accurate t ra�c ident i� cation and classi� cation are essent ial for proper network

con� guration and securi ty monitoring. Application-layer encrypti on can however

bypass restrictions set by network con� gurat ion and securit y checks. Several ap-

plication protocols adopted the Secure Socket Layer (SSL) encrypt ion to protect

the con�d ent ialit y of communications, which raisesnew challenges with respect to

t ra�c classi� cation and malware detection.

In this chapter, we focus on Skype asan interesting example of encrypted tr a�c

and provide a method for ident ifying di�er ent encrypted TCP Skype  ows tun-

neled over SSL|w e want t o discriminate between voice calls, video conferencing,

skypeOut calls, chat, and �l e sharing. Previous papers on Skype concentrated on

its architecture and the authent ication phase [33, 31, 34], on the mechanisms for

� rewall and NAT traversal [92] aswell ason characterizing t ra�c streamsgenerated

by VoIP calls and Skype signaling [51, 35]. Bon�gl io et al. proposed ident i�c ation

methods for encrypted UDP Skype tra� c [18], but no work hastackled the problem

of how to classify encrypted TCP  ows generated by all Skype services.

Skype exempli � es the problem of ident ifying encrypted o ws, because it mult i-

plexesseveral servicesusing the sameports: VoIP calls, videoconferencing, instant

messaging, or � le t ransfer. A network administrator may assign a higher priority

to VoIP calls, but other  ows may also bene�t in an illegiti mate way from a higher

priority if we cannot dist inguish them from VoIP calls.

7.1 Contr ibut ions of Par t III

We propose a classi� cation method for Skype encrypted t ra�c basedon the Sta-

t istical Protocol IDent i� cation (SPID) [22] that analyzes statistical values of o w

and application layer data. We propose an appropriate set of att ribute meters to de-



58 Chap t er 7. In tr odu ct ion

tect encrypted TCP Skype tra� c and ident ify its service o ws. We consider a very

special caseof Skype tra�c that is, in addit ion to proprietary encrypt ion, tunneled

over SSL. Our method involvesthreephases with progressive ident i� cation: the �r st

classi�c ation phaseearly reveals Skype tra�c , while the second one provides the

preliminary Skype o ws ident i� cation: the dist incti on between voice/v ideocommu-

nication, chat, voice calls towards phones using skypeOut , and � le sharing. The

� nal phase ident i�e s Skype o ws in detail: voice calls, video and voice communi-

cation (denoted later as just video), chat service, skypeOut calls, �l e upload and

download. To select the right attr ibute meters for each phase, we applied a method

called forward selecti on [55] that evaluates how a given att ribute meter improves

classi�c ation performanceand promotes it t o the t ra�c model if its in uence is sig-

ni� cant . Forward selecti on usesthe Analysis of Variance (ANOVA) [59]. We have

evaluated our classi� cation method on a representative dataset to show excellent

performance in terms of Precision and Recall.

7.2 Relevant Publ icat ions for Part III

[23] Maciej Korczy�nski and Andrzej Duda. Classifying Service Flows in the En-

crypted Skype Tra� c. 2012 IEEE International Conference on Communica-

ti ons (ICC'12), pages 1{5, June 2012.
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I ssues in t he A nal ysis of Skyp e

Tra�c

Skype tra� c presents a major challengefor detection and classi�c ation, because

of proprietary software, several internal obfuscation mechanisms, and a complex

connection protocol designedfor bypassing � rewallsand establishing communication

regardlessof network policies.

Skype di�er s from other VoIP applications, becauseit relieson a p2p infrastruc-

ture while other applications use the t radit ional client -server model. Skype nodes

include clients (ordinary nodes), supernodes, and servers for updates and authent i-

cation. An ordinary node with a public IP address, su�c ient comput ing resources

and network bandwidth may becomea supernode. Supernodesmaintain an overlay

network, while ordinary nodes establish connectionswit h a small number of supern-

odes. Authent ication servers store the user account information. A Skype client

communicates with the authent ication server and another ordinary node in an in-

direct way via supernodesthat relay packets. Skype can mult iplex di� erent service

 ows such as voice calls to another Skype node, skypeOut calls to phones, video

conferencing, chat, � le upload and download. Our goal is to detect and classify the

service  ows in Skype tra� c.

Even if the maintenance of the supernode list is possible through someactive

and passivemethods [31], the associated information may only be useful in revealing

Skype tra�c and not in detect ing Skype service  ows. We cannot use tradit ional

port -based  ow ident i� cation methods, because Skype randomly selects ports and

swit ches to port 80 (HT TP) or 443 (HTTP over SSL) if it fails to establish a

connection on chosen ports.

Another feature of the Skype design is the possibili ty of using both TCP and

UDP asa transport protocol. Skype uses TCP to establish a connection and then it

canswitch to UDP for both signaling and regular communication. Onceit makesthe

init ial connection, it can interchangeably use TCP or UDP depending on network

restr ictions.

Skypeencrypts its t ra�c with theproprietary encrypt ion technologiesto protect
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communications exchangedbetweenit s clients and severs. It uses several encrypt ion

algorit hms [93], which makes tra�c classi� cation a challenging task. It s servers

use the st rong 256-bit Advanced Encrypt ion Standard (AES), the supernodesand

clients use three di� erent t ypes of Rivest Cipher 4 (RC4) encrypt ion. Finally,

the clients also use AES-256 on top of RC4 algorit hm to protect from potent ial

eavesdropping. Skype ent irely encrypts TCP tra�c , but someinformation in the

UDP payload is not encrypted so a part of the Skype messages encapsulated in

UDP can be obtained and used for identi � cation [18].

We propose an accurate method for classi� cation of encrypted TCP Skype ser-

vice  ows tunneled over SSL. It is a hybrid method combining t ra�c  ow metering

with Deep Packet Inspecti on (DPI) elements.
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9.1.1 Cl assi�ca tio n Based on SPI D

We build our method upon SPID (Stat isti cal Protocol IDent i�c ation) [22] (cf.

Figure 9.1). It is based on tra� c models that contain a set of attri bute � ngerpri nts

represented as probabili ty distribut ions. They are created through frequency anal-

ysis of t ra� c propert ies called attri bute meters of application layer data or o w

features. An example of such an att ribute meter is byte frequency that measures

the frequency at which all of the possible 256 values occur in a packet. Other at-

t ribute meters de�ned later in Table 9.1 and 9.2 include for instance byte o�set ,

byte re-occurr ing, direction change, and packet size.

As illustrated in Figure 9.1, SPID operates in three steps. First, packets are

classi�e d into bi-directi onal  ows. Al l connecti ons are represented as 5-tuples ac-

cording to the source IP address, source port , destination IP address, desti nation

port , and transport layer protocol. However, only packets carrying data are sig-

ni� cant , because the analysis is based on both the application layer data and  ow

features. Then, each o w is analyzedin terms of att ribute meters to obtain a collec-

t ion of att ribute �n gerprints. Finally, the obtained att ribute � ngerprints are used

either in t ra�c model generation or in t ra�c classi�c ation.

To ill ust rate the process of �n gerprint creation, consider an example of the

byte frequency att ribute meter computed on the � rst 5 bytes of the SSL Server

Hello packet, a part of the SSL handshake protocol. The � rst 3 bytes refer to

the message type (0x16) and the SSL version (0x03 01), while the last two bytes

correspond to the size of the remaining part of the SSL record (0x00 4a). Each t ime

we observe a part icular value, its counter is incremented. In the example, all � ve

counters referring to the �v e values will be incremented. Then, SPID maintains a

probabil ity vector|t he normalizedcounter vector with all elements summing up to

one.

At t he init ial t raining phase, the method creates tra� c models|at t ribute � n-

gerprints representative for the t ra� c we want t o detect. During the classi�c ation

phase, the method computesatt ribute � ngerprints on the  ows to classify and com-

pares them with t ra�c models by means of the Kullback-Leibler (K-L) divergence

[28]:

D (PjjQ) = K -L(P; Q) =
X

x2 X

P(x)log2
P(x)
Q(x)

: (9.1)

The K-L divergence is a measure of the di� erence between two probabil ity dis-

t ribut ions P(x) and Q(x). P(x) represents the distribut ion of a part icular att ribute

of an observed  ow and Q(x) is the dist ribut ion corresponding to a known tra�c

model. Classi� cation consists of comparing P(x) with all known tra�c models and
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selecting the protocol wit h the smallest averagedivergenceD(PjjQ) and lower than

a given threshold. We need to correctly set the divergence threshold to decrease

the False Posit ive Rate for known tra� c models|w e only take into consideration

the K-L divergence averagevaluesbelow the threshold.

Figure 9.2 presents a simpli�e d process of the proposed classi� cation method. In

the �r st phase, it detects Skype tra�c after a TCP three-way handshake based on

the � rst �v e packets of the connection by considering att ribute meters, the majority

of which re ects application level data. Then, it changesthe set of att ribute meters

to both packet independent and application level data features to detect service

 ows in the Skype tra� c: voice/v ideo, skypeOut , chat, and �l e t ransfer. Thi s

phase requiresa larger number of packets to analyze to be e� ective: our calibrat ion

sets this value to 450 packets. Finally, the method considers more packets (t he

threshold is set to 760) to further dist inguish between voice and video  ows, and

between �l e upload and download.

9.1.2 A t tr ibut e Met ers for Skyp e

In th is subsect ion, we present t he set of att ribute meters de�ned for classifying

Skype tra�c (cf. Table 9.1 and 9.2) with notation presented in Table 9.3.

ˆ byte fr equency : in each packet it measuresand returns thefrequency of indi-

vidual bytes in the payload. Encrypted data seems to have equally distributed

byte frequencies, whereas the plain text may exhibit di�er ent distribut ions.

The SSL protocol, in the �r st bytes of the t ransmit ted packets, tends to pro-

vide some unencrypted information related to the session, such as the SSL

version, messagetype, compression method selected by the server, etc.

ˆ acti on-r eactio n of � r st bytes: it creates hash values based on the � rst 3

bytes of each packet that was sent in a di�e rent direct ion than the previous

one. It is sometimes bett er to analyze packets sent alternately in di�er ent

directions instead of looking at all packets, becausewe can easily analyze the

request-response phase between a client and a server.

ˆ byte valu e o�s et hash: it combines individual byte values in each packet

with the o�set at which the bytes are posit ioned. The meter considers up

to 32 bytes of the 4 � rst packets. The SSL is one of the protocols that use

several posit ionsin part icular packets (e.g. in Client Hello or Server Hello

messages). As a result , the combination of bytes with their posit ions provides

some addit ional information with respect to the byte frequency.
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Table 9.1: De� nit ion of att ribute meters used in classi�c ation

Att ribute meter De� nit ion

byte frequency M 1 : f (k; pk )g, k = 0; 1; :::; 255;pk = mkP
mk

, mk =
P 8

i =1
P 100

j =1 � x i
j

action-reacti on of � rst 3

bytes

M 2 : f (hi ; ph i ); 8i 2 (1;3)g, h : (yi
3� ; zi

3� ) ! h(yi
3� ; zi

3� ),

ph i =
mh iP

mh i
, mh i = � h(y i

3� ;z i
3� )

byte value o� set hash M 3 : f (h; ph)g, h : (j ; x i
j ) ! h(j ; x i

j ), ph = mhP
mh

,

mh =
P 4

i =1
P 32

j =1 � h(j ;x i
j )

� rst 4 packets byte re-

occurring distance wit h

M 4 : f (h; ph)g, 8d< =16 : h : (x i
j ; d) ! h(x i

j ; d), ph = mhP
mh

,

byte mh =
P 4

i =1
P 32

j =1 � h(x i
j ;d) )

� rst 4 packets � rst 16

byte pairs

M 5 : f (h; ph)g, h : (x i
j ; x i

j +1 ) ! h(x i
j ; x i

j +1 ), ph = mhP
mh

,

mh =
P 4

i =1
P 16

j =1 � h(x i
j ;x i

j +1 )

� rst 4 ordered direction

packet size

M 6 : f (f ; pf )g, f : (i; s(x i ); dir (x i )) ! f (i; s(x i ); dir (x i )),

pf = m fP
m f

, mf =
P 4

i =1 � f ( i;s (x i );dir (x i ))

� rst packet per direc-

t ion � rst N byte nibbles

M 7 : f (f ; pf )g, 8x12f z1 ;y1g : f : (nib(x1
j ); j ; dir (x1))

! f (nib(x1
j ); j ; dir (x1)),

pf = m fP
m f

, mf =
P 8

j =1 � f (nib (x1
j );j ;dir (x1 ))
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Table 9.2: De� nit ion of att ribute meters used in classi�c ation - cont .

Att ribute meter De� nit ion

direction packet size

dist ribut ion

M 8 : f (f ; pf )g, f : (s(x i ); dir (x i )) ! f (s(x i ); dir (x i )), pf = m fP
m f

,

mf =
P s(x)

i =1 � f (s(x i );dir (x i ))

byte pairs reoccurring

count

M 9 : f (f ; pf )g,

8x i
j = x i +1

j
: f : (x i

j ; dir (x i
j ); dir (x i +1

j )) ! f (x i
j ; dir (x i

j ); dir (x i +1
j )),

pf = m fP
m f

, mf =
P s(x)

i =1
P 32

j =1 � f (x i
j ;dir (x i

j );dir (x i +1
j ))

ˆ � r st 4 packets byte r eoccur ri ng distance wit h byte : it createsa short

hash value (usually a 4-bit representation) and combinesit wit h the distance

between the two occurrences. The measurement detects the bytes that oc-

curred more than once within 16 previous bytes. Originally, it was created to

ident ify banners in plain text packets like e.g. TT in HTTP GET and POST

messages,but it also appliesto the case of the encrypted or the tunneled SSL

content .

ˆ � r st 4 packets � r st 16 byte pair s: it combines neighboring bytes in a

16-bit value and converts to a 8 bit hash value (t he size is determined by the

� ngerprint length). It analyzes only application layer data regardless of the

 ow information, i.e. packet size, direct ions, or inter-arrival t imes. The meter

indicates that there are somespeci� c, not random two-byte combinations like

e.g. list compression methods supported by the client in the SSL Client

Hello messagesent t o the server.

ˆ � r st 4 ord ered dir ecti on p acket size: the meter returns the compressed

version of thepacket size|it representsa rangein which thepacket liesinstead

of the exact value. Measurements are separately done for each of four � rst

packets in connect ion and the returned value is associated with the packet

direction and the order number. It is a o w based att ribute created for early

t ra�c recognit ion.
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Table 9.3: Notation

M : f (k; pk )g { att ribute meter

k = 0; 1; 2; : : : ; 255 { random variable of an attr ibute meter

mk { att ribute meter counter

pk { probabili ty dist ribut ion of an att ribute meter (corresponds to Q(x) in t ra� c

model generat ion and P(x) in t ra�c classi�c ation)

� { indicator function; � : X ! f 0; 1g; � x i
j

=

(
1 if X = x i

j

0 if X 6= x i
j

h { hash funct ion, h = 0; 1; 2; : : : ; 255

f { compressing funct ion, f = 0; 1; 2; : : : ; 255

x i { packet i

x i
j { byte j in packet i

x i
j (m) { bit m in byte j in packet i

P
i x i $ x { all packets in a TCP session

yi { packet i , zi { packet sent in a di� erent direct ion than yi

x i
� j { � rst j bytes in packet i

d { distance between two ident ical bytes; if x i
j = x i

j � d ) d;0 < d < j

s(x) { size of x; amount of packets in a TCP session

s(x i ) { size of packet x i in bytes

dir { packet direction

nib: x i
j $ x i

j (m2 (1:::8)) ; x i
j (m2 (1:::4)) X OR x i

j (m2 (5:::8) ) nib(x i
j )

ˆ � r st packet per direct ion � rst N byt e nibb les: it analyzes the � rst

packet in each direct ion and inspects its � rst few bytesdepending on the � n-

gerprint length (8 bytesfor a � ngerprint length of 256). It provides a measure

combining the packet direction, byte o�s et, and a compact representation of

the byte value so-called nibble, (i t divides a byte into two 4-bit groups, per-

forms an XOR calculation, and returns the resulti ng 4-bit value). The � rst

packet in each direct ion and the � rst few bytescorresponding to these packets

say a lot about t he application layer protocol and might also provide some

hidden information of the underlying service.

ˆ dir ecti on p acket size dist ri bu t ion: this att ribute is very similar to the

� rst 4 ordered direction packet size meter. The only di� erence is that it

inspects all packets in a connect ion and does not mark each measurement

with the order number of the packet in a connection. It is an example of a

 ow based att ribute especially suit able for detailed Skype classi� cation: it is

able to classify  ows in which packet sizes per direction are di�er ent , which
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enables to distinguish, for example, � le upload from download.

ˆ byte pai rs r eoccur ri ng coun t : it detects bytes that reoccur in the same

posit ion in two consecut ive packets. In addit ion, it t akes into account t he

direction of a given packet and its predecessor.

9.1.3 Metho dol ogy for A tt ri bute Met er Selecti on

Our classi� cation process is based on three phasesand each of them requires a

proper set of att ribute meters. We applied a method called forward selection for

choosing att ribute meters. It consists of starti ng wit h an init ial att ribute in the

model, t rying att ributes out one by one, and adopt ing them, if they improve the

classi�c ation performance. The selection terminateswhen adding an att ribute does

not improve the performance.

We consider a set of n att ribute meters x1; :::; xn 2 X and a set of m Skype

services. We begin with a model that includes the most signi�c ant att ribute in the

init ial analysis. More precisely, we compute Pr ecision, Recall , and F -M easure

(cf. Eq. 3.2 - 3.4) for a part icular Skype service and for each individual att ribute

meter. The True Posit ive (TP) t erm refers to all Skype  ows that are correctly

ident i� ed, FalsePositi ves(FPs) refer to all  ows that were incorrectly ident i�e d as

Skype tra�c . Finally, False Negatives (FNs) represent all o ws of Skype tra�c that

were incorrect ly ident i� ed as other t ra�c.

We select attr ibute x i 2 X with the largest averageF -M easure de�ned as:

max
x2 X

1
m

X

a2 (1;m)

F M x
a ; (9.2)

where F M x
a denotesath observation of F -M easure value corresponding to x th at-

t ribute meter.

In the next step, each of the remaining att ributes x1; :::x i � 1; x i +1 ; :::xn 2 X is

tested for inclusion in the model. We run several F -tests (explained below) t hat

compare the variance of F -M easure values obtained in the preliminary select ion,

i.e. F M x i
a , where a 2 (1; m), with the corresponding valuesobtained after including

each att ribute meter separately.

Let us focus on a parti cular F -test [59] that comparesthe in uence of att ribute

meter x j 2 x1; :::x i � 1; x i +1 ; :::xn 2 X with the � rst model basedon x i 2 X . We

examine two groups of F -M easure values F M x i
a and F M x ij

a that respectively cor-

respond to att ribute x i and to the set of two att ribute meters, i.e. x i and x j . We

test the null hypothesis that two meansof the discussed population are equal. If we

fail to reject it , the addit ional att ribute meter does not improve the classi�c ation
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performance and we need to exclude it from further considerat ion. To examine

thesetwo groups, we use the one-way Analysis of Variance (ANOVA) F -test [59]

that compares the variance between the groups to the variance with in the groups.

The between{groups variance is given by:

Sbet = m �
X

x

(F M
x

� F M )2

(k � 1)
; (9.3)

where F M
x

denotes the mean of F M x
a values, F M denotes the overall mean of

F -M easure observations, i.e. F M x i
a and F M x ij

a , m is the number of F -M easure

values for Skype services and k is the number of groups (in the discussed case equal

to 2). The within{group variance is given by:

Swit =
X

x;a

(F M x
a � F M

x
)2

k � (m � 1)
; (9.4)

where F M x
a denotesath observation corresponding to each x th classi�c ation (in the

discussed caseto the classi� cation basedon x i and the classi� cation based on the

set of two att ributesx i and x j ).

The F -statistics is computed as:

F =
Sbet

Swit
; (9.5)

and it follows the F -distr ibution with k � 1, k � (m � 1) degrees of freedom under the

null hypothesis. If the null hypothesis is rejected and the averageF -M easure value

corresponding to x i is lower than F -M easure related to the set of two att ribute

meters, i.e. x i and x j , then att ribute x j is considered as a candidate to be included

in the model.

For each of the att ribute meters, the method computes F -statistics that re ects

the contribut ion of attr ibutes to the model. The most signi�c ant att ribute is added

to the model, if F -statistics is above a prede�ned level set to 0:1. Moreover, if

F -statistics is above 1, it is included in the model and considered as a signi� cant

att ribute meter. The forward selecti on method then computes F -statistics again

for the att ribute meters st ill remaining outside the model and the evaluation process

repeats. Therefore, att ributesare added oneby oneto the model unt il no remaining

att ribute results in signi� cant F -statistics .
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9.2 Evalua ti on Result s

We start with the descript ion of the datasets used for t raining the method and

evaluating its performance. We then present t he cri teria for classi� cation perfor-

mance and we discuss the evaluation results of the proposed method. We also

explain how we calibrate the parameters of the method (t he choice of the number

of packets to analyze during each step, the number of  ows used in the t raining

process, and the selection of the right K-L threshold).

9.2.1 Da ta set Descr ipt ion

The appropriate select ion of packet t racescontaining ground-t ruth information

is one of the key aspects in the t raining and evaluation process. It should be as

extensive as possible and should cover various environments. We have generated

TCP Skype tra�c in the following condit ions:

ˆ various operating systems: Linux, MacOS, Windows,

ˆ wireless and wired networks,

ˆ connections within one LAN as well as WAN connections between LANs lo-

cated in France and Poland,

ˆ di� erent versions of Skype (2, 3, and 5)

To force Skype to generate desired  ows, we have used � rewall rules to block

UDP so that all communications useTCP and allowed only well-known TCP ports

so that Skype switches to port 443.

We have used Wireshark [94] to collect packet tr acesand to distinguish Skype

 ows from other network t ra�c. We have tested all Skype servicesseparately to

simpli fy the extr act ion of the desired  ows and captured  ows containing voice,

video, skypeOut , chat, � le upload and download. We have observed the useof the

G.729 codec for skypeOut calls and SILK V3 for Skype-to-Skype voice communi-

cation. Skype adopts VP7.1 codec for video communication. Overall, we gathered

479 Skype  ow traces taking more than 770 MB.

Therefore, we have divided the collected set of  ows into several groups accord-

ing to operating systems, network access technologies, and Skype versions. For

the tr a�c model generat ion purposewe have selected a group of tr aces generated

by MacOS over a WAN connect ion between wireless LANs located in France and

Poland. We have used the remaining datasets to evaluate the classi� cation mech-

anism. Our � ngerprint databasewith 6 Skype service  ow models has the size of

1.78MB in the XM L format.
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Furthermore, we have gathered a separate set of t races without Skype tra�c

to test the discrimination of our method. It contains various typesof t ra�c: SSL,

SSH, HTTP , SCP, SFTP, VoIP, Bit Torrent , and standard services like streaming,

video conferencing, chat service, mail, � le sharing. The tracescontain 18945 ows

of around 3GB and were gathered between December 2010 and March 2011.

9.2.2 Cr it eri a for Cl assi�ca tio n Perf ormance

We use three metrics to quant ify the performance of classi�c ation: Precision,

Recall, and F -M easure (cf. Eq. 3.3 - 3.4). F -M easure is an evenly weighted

combination between Precision and Recall, which means that if the system can

for instance ident ify skypeOut t ra�c with Precision 100%(no FalsePosit ives) and

Recall is 96.6% then the F -M easure is 98.2%.

9.2.3 Performance of Cl assi�ca tio n

To evaluate the proposed method, we have extended the version 0.4.6 of SPID

[95].

Our method depends on three parameters: the amount of packets required for

reliable t ra�c and  ow ident i�c ation during each of the three steps, the K-L di-

vergence threshold, and the number of o ws used in the t raining process. We � rst

present t he classi�c ation results for the number of packets in each phase set to

5, 450, and 760 packets, respectively, the K-L divergence threshold of 1.9, and 15

training o ws (we evaluate the impact of parameters further on and explain how

we have chosen their values,cf. Section 9.3).

Af ter each classi�c ation step, the classi� er decides if there are any instances

of Skype  ow for furt her analysis. If the ident i� cation result is posit ive, then it

cont inues wit h more detailed classi� cation of Skype  ows with a di�er ent set of

att ribute meters. Otherwise, it �n ishesas no Skype o ws were recognized.

The object ive of the � rst classi� cation phase is to early detect encrypted TCP

Skype o ws tunneled over the SSL protocol. The most signi� cant att ribute meter

chosen in the selection process is M 5 (cf. Table 9.1). Two other important at-

t ributesare M 7 and M 6 while M 3, M 4, and M 1 are less meaningful. In addit ion

to payload inspection att ributes(M 5, M 7, M 3, M 4, and M 1), we have chosenone

typical o w based attr ibute that combines features like size, direction, and packet

order number (M 6). Such selection indicates that the � rst SSL packets contain

some characterist ic values that di�e r from the headers of other services that use

SSL (cf. Section 12.2).

Our experiments show that inspecting only the � rst �v e packets containing the
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Table 9.4: Performance of Phase1, Early Recogniti on of Skype Tra�c

Tra�c Precision % Recall % F-M. %

Skype 100 100 100

No Skype 100 100 100

payload is su� cient t o reveal Skype tra�c with Precision, Recall, and F-Measure

equal to 100%(cf. Table 9.4).

Oncethemethod detects Skypetra�c, it classi�e s theunderlying typeof service,

i.e. voice/v ideo communication, skypeOut calls, chat, � le sharing. In the second

phase, the method usesanother set of att ribute meters (M 8 asthe most important ,

M 7 asa signi� cant one, and M 9, M 2, and M 5 asaddit ional ones). The selected set

of att ributes is composed of payload independent direction packet size distr ibution

att ribute meter (M 8) with DPI att ributes(M 7, M 9, M 2, and M 5).

Table 9.5: Performance of Phase2, Classi�c ation of Skype Flows

Skype Service Precision % Recall % F-M. %

voice/video 99.1 95.7 97.4

skypeOut 100 96.6 98.2

chat 86.4 100 92.7

� le sharing 100 98.6 99.3

Table 9.5 shows very good result s of classi� cation after inspect ing 450 pack-

ets. However, th is phase cannot dist inguish between voice communications and

voice/video calls due to similar t ra�c characteristics. Nevertheless, from the Qual-

ity of Service (QoS) perspective, network administ rators may already give priorit y

to Skype voice/vi deo tra� c and limit Skype �l e sharing o ws regardless of the

t ra�c direction.

The objective of Phase3 is to further re�n e the classi�c ation of voiceand video

 ows aswell as �l e sharing. We have applied M 8 as the most important  ow based

att ribute meter and DPI based M 7 as an additi onal one. Table 9.6 presents the

� nal result s obtained after analyzing 760 packets. We can observe that the results

are very good for most of Skype o ws. We can easily dist inguish between � le upload

and download based on the  ow att ribute combining the directi on with the packet

size dist ribut ion (cf. attr ibute M 8 in Table 9.2). The classi� cation is based on the

fact that the sizesof packets sent from the client signi� cant ly di�er s from the sizes

of packets sent in the opposite directi on.

Classi�c ation of voice and video  ows performs slight ly worse, because our
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Table 9.6: Performance of Phase3, Detai led Classi�c ation of Skype Flows

Skype Service Precision % Recall % F{M. %

voice 72.9 57.4 64.2

video 60.3 73.2 66.1

skypeOut 100 96.6 98.2

chat 90.2 97.4 93.7

� le upload 100 96.9 98.4

� le download 100 97.5 98.7

method does not capture some characteristics of the Skype behavior (it is meant

to be applied to other classi�c ation problems as well). We have observed that in

the case of Skype calls (both voice and video), the Skype client sends t ra� c simul-

taneously through several nodes depending on network condit ions. In other words,

the Skype voice or video tr a�c may spread on several TCP connections, which we

cannot capture, becauseour method considers each TCP o w separately.

In contrast to voice/v ideo communication and �l e sharing, we have noticed

that chat messagesand skypeOut calls seem to be sent t hrough a single node.

Considering chat messages, we have observed that when an intermediary node goes

down, communication switches to another one without any interference for the

users. This is not surprising if we take into account a small amount of data to send.

For skypeOut calls, however, we have observed that the whole communication goes

through a single intermediary node and the range of relay addresses is limited.

This may come from higher requirements for bandwidth and comput ing resources

to support high quality of calls. To sum up, in this classi�c ation step it was easier

to ident ify thesetwo type of services, becausethe whole t ra� c was sent over single

 ows.

9.3 Cali bra t ion of t he Met hod

In this section, we consider the choiceof the right values for the mathod param-

eters:

ˆ the K-L divergence threshold,

ˆ the number of inspected packets per  ow in each classi�c ation phase,

ˆ the number of o ws usedin the t raining process.

Figure 9.3 shows the F-Measure for 15 t raining o ws and for three classi�c ation

steps (analysis after 5, 450, and 760 packets) depending on the K-L divergence
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Figur e 9.3: F-Measure depending on the K-L divergence threshold for three

classi�c ation phases.

threshold. Choosing an appropriate value of K-L divergence threshold is important

becausea too low value results in an increasednumber of FalseNegatives, i.e. Skype

 ows are incorrectly ident i� ed as unknown tra� c, which decreases the F-Measure.

If the threshold is too high, then it may lead to mult iple FalsePosit ives, i.e. other

protocols are incorrectly identi � ed as Skype. As shown in Figure 9.3, a large value

of the threshold signi� cant ly a�ects the F-Measure. The results suggest t hat the



9.3. Cal ib r atio n of th e M eth od 75

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of inspected packets

F
-M

ea
su

re
 [%

]

 

 

 

Skype

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Number of inspected packets

F
-M

ea
su

re
 [%

]

 

 

 
voice/video chat file sharing skypeOut

100 300 500 700 900 1100 1300 1500
0

20

40

60

80

100

Number of inspected packets

F
-M

ea
su

re
 [%

]

 

 

 
voice video chat file up. file d. skypeOut

Figur e 9.4: F-Measure depending on the number of inspected packets for

threeclassi�c ation phases.

opt imal value for all three classi� cation phases is 1.9.

Figure 9.4 shows the F-Measure depending on the number of inspected packets

containing payload for three classi� cation phaseswith the K-L divergencethreshold

equal to 1.9 and 15 training  ows per t ra�c model. As we can seein the � gure, the

� rst classi�c ation phaserequiresonly 4 packets to achieve the F{M easure equal to

100%. In the second classi� cation phase, the distinction betweenSkype services, i.e.

voice/video, skypeOut , chat, and �l e sharing, is very clear (t he averageF-Measure

close to 97%) after 450 packets containing payload. A slight ly lower Precision for

the chat service when the number of inspected packets is less than 450 packets is



76 Ch apte r 9. D esign and Evalu ati on

1 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of training flows

F
-M

ea
su

re
 [%

]

Analysis after first 5 packets

 

 

Skype

1 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of training flows

F
-M

ea
su

re
 [%

]

Analysis after first 450 packets
 
 

 

 
voice/video chat file sharing skypeOut

1 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of training flows

F
-M

ea
su

re
 [%

]

Analysis after 760 packet
 
 

 

 
voice video chat file up. file d. skypeOut

Figur e 9.5: F-Measure depending on the number of t raining  ows for three

classi�c ation phases.

probably due to a limited number of observations during the construct ion of the

chat t ra�c model. Despite the same number of t raining o ws set up to 15 for all

t ra�c models, i.e. voice, video, chat, skypeOut , t ra�c upload and tra� c download,

the amount of data available during the creation of the chat t ra�c model was three

t imes lower than in other cases. Therefore, the lower Precision for chat means

that other Skype services were incorrect ly ident i� ed as chat, which results in a
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lower Recall for voice/v ideo as well as for � le sharing, while the performance for

skypeOut remains almost una� ected due to di� erent t ra� c characteristics.

In the third classi�c ation phase, the F-Measure signi�c ant ly raises wit h the

number of inspected o ws up to around 700 packets. Choosing the number of 760

results in the F{M easure for voice and video tra� c models around 65%, whereas

the accuracy of the classi�c ation is nearly ideal for other typesof Skype tra�c .

Finally, Figure 9.5 presents the inu ence of the number of t raining o ws on the

F{M easure value for three classi� cation phases. We can see that the crit ical amount

of t raining  ows essent ial for identi � cation of the encrypted Skype tra� c is equal

to 3. However, to improve classi�c ation performance, we have used 15 tr aining

sessions for each tra�c model, because the t raining phaseis done o� line, so it does

not in uence the speed of classi�c ation.

9.4 Rela t ed Work

Much research has concerned the domain of t ra�c classi� cation during recent

years [5, 2, 3, 26, 96], however only a few authors focused on encrypted t ra� c

[52, 25, 33, 31] or on the classi�c ation of encrypted o ws [97, 18, 51, 35]. Some of

thesemethods were applied to the problem of Skype classi� cation and cannot be

easily extended to other ident i�c ation problems of encrypted t ra�c.

Teixeira et al. [52] extended their previous work [26] and proposed a method

basedon the sizeof the � rst few packets of an encrypted connect ion, which enables

an early application protocol recognit ion with the accuracy of more that 85%. In

our work, we make a step forward by proposing an accurate method for detecting

service o ws in encrypted Skype tra� c basedon various t ra� c o w and payload

att ributes.

A recent approach focused on the detection of Skype o ws especially voice ser-

vice t ra� c [31]. Even if the method results in high accuracy, it is not applicable to

other classi�c ation problems, because it makes useof o w features and node infor-

mation obtained from some passive and act ive measurements within the Skype p2p

network. The solut ion proposed by Al shammari et al. [33] is based on a machine

learning algorithm using o w features without taking into account IP addresses,

port numbers, and the payload. It is a fairly general methodology and like for us,

Skype is a test casefor the classi� cation of encrypted t ra�c. However, it is not

sure that the method can classify Skype o w services. Another approach tries to

address the problem of ident ifying encrypted application layer protocols by means

of a hybrid method that combinessignature-based and statisti cal analysis methods

[25]. The work is closely related to ours, but t heir objective is limited to the classi� -
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cation of encrypted application layer protocols, while we focus more on an in-depth

analysis of part icular Skype services. Wright et al. tackled the challenging task

of ident ifying the languageof conversations by using the length of encrypted VoIP

packets [97]. Even if their work di�er s from our study in terms of classi�c ation

objectives, we believe that the conclusions may remain the same, i.e. when using

certain t ra�c characteristics it is possible to ext ract some meaningful in formation

even from encrypted t ra�c .

Bon� glio et al. investigated the characteristics of t ra� c streamsgenerated by

voice and video communications as well as the signaling t ra�c generated by Skype

[51]. Chen et al. concentrated on the QoSlevel provided to Skype users [35]. Due to

simple classi� cation criteria, they cannot however dist inguish betweenvoice, video,

and skypeOut calls.

Finally, Bon� glio et al. proposed a framework based on two complementary

techniques [18]. The � rst one detects Skype tra�c �n gerprints and the second one

is basedon  ow characteristics (t he packet arrival rate and the packet size). The

authors evaluate two classi�e rs to reveal Skype tra� c. The �r st Chi-Square Clas-

si� er checks the characteristics of the message content after cyphering. With this

methodology, they can only distinguish between voice and skypeOut  ows trans-

ported over UDP basedon somedeterminist ic unencryptedbytes in Skypemessages.

The second Naive Bayes Classi� er checks the resemblance of the measured tra� c

with expected stochastic characteristics. Despit e the fact t hat the framework is in-

spiring and innovative, it is limited to only classifying some classesof Skype tr a�c

and depends on the deterministi c byte values in the unencrypted UDP payload. In

our studies, we have focused on TCP tra�c where the whole content of a Skype

messageis encrypted and tunneled over the SSL protocol.

To summarize, the research described above focused eit her on limited classi�-

cation of Skype tra�c depending on part icular unencrypted payload bytes or on

some typical behavior of the Skype protocol. We believe that the problem of the

detailed classi� cation of encrypted t ra� c, in part icular, the ident i� cation of service

 ows in the encrypted Skype tra�c has not received su�ci ent attent ion yet. Our

hybrid method providesa step forward in this direct ion.

9.5 Conclus ions

In this paper, we have considered the problem of detect ing encrypted TCP

Skype tra� c tunneledover SSL and classifying Skypeservice ows. Our three-phase

hybrid classi�c ation method is based on SPID and combines t radit ional statistical

 ow features with DPI elements. In each phase, we select a subset of relevant
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att ribute meters through forward selection basedon ANOVA. The performance of

themethod on a representativedataset is very promising|i t achieveshigh Precision

and Recall for most Skype service  ows, whereas dist inguishing between voice and

video  ows in the �n al classi� cation phase is more challenging due to spreading

t ra�c on several TCP connections.
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In this thesis, we have already emphasized the importance of adequate t raf-

� c classi�c ation methods for e�ective network planning, policy-based tra�c man-

agement , application priorit ization, and security control. Tradit ional port -based

[14, 17, 98] and payload-based [7, 5, 99] classi� cation methods, however, become

less e� cient , because new applications begin to usesophisticated obfuscation mech-

anisms and an increased number of applications make use of encrypt ion, e.g., Tor

[100], I2P [101], Bit tor rent [102], IMule [103], Skype [93]. Applications can hide

their nature by dynamically assigning ports, by using tunneling, or by applying

proprietary payload encrypt ion methods. This situation has led to the development

of new o w feature-based[3, 52] and host behavior-based [2, 19] classi� cation meth-

ods. In oppositi on to theseapproaches, we propose a classi� cation framework that

usestwo statist ical, payload-based methods to accurately classify t ra�c encrypted

with the Transport Layer Securi ty/Secure Sockets Layer (TLS/SSL) protocols.

TLS/SSL is a fundamental cryptographic protocol suite that supports secure

communication over the Internet [104] by encapsulating and encrypt ing application

layer data. Many WWW portals and servers, especially thoseproviding commer-

cial services, use TLS/SSL for guaranteeing security of all operations. In addit ion

to security, TLS/SSL tunnels are increasingly used as tools for defeating security

control and bypassing restrict ions set by network con� guration and securi ty checks.

Enforcing control over TLS/SSL encrypted o w is di�cu lt , because the protocol

was speci�c ally designed to prevent eavesdropping and data tampering. Thus, the

side-e�ect of it s powerful mechanisms for support ing security is the lost capabil it y

of monit oring and controlling t ra�c .

The past research on tra�c analysis and classi� cation showed that once we are

able to generate a unique signature basedon the packet or messagepayload (e.g.,

HTTP request headers), we can classify applications wit h high accuracy [7, 16].
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Unfortunately, such approachesfail in case of encrypted t ra�c [13], which spawned

the development of  ow-based and host behavior-based approaches. Nevertheless,

recent research has also shown that it is st il l possible to create some statistical

signaturesdespite t ra�c encrypt ion [18, 23]. We follow this approach by de� ning a

framework for classifying TLS/SSL encrypted applications based on inspecti ng the

packet content of the application layer. We have found that the useof the TLS/SSL

protocol str ongly depends on service and application needs so it can re ect some

tra�c features, which allows us to discriminate between applications. In other

words, we extract someindirect information from the TLS/SSL layer and useit to

classify underlying applications.

10.1 Cont ri buti ons of Part I V

Following theseprinciples, we de�n e a framework based on two complementary

methods for classifying applications. In the �r st method, we use a � rst-order ho-

mogeneous Markov chain to build a stochastic model ree cting TLS/SSL session

states. We call this method a Markov Classi�e r (MC). The session statesrepresent

the TLS/SSL protocol and message types in single-directi onal t ra� c  ows (client

to server and server to client) . In this way, we obtain a TLS/SSL session model per

 ow direct ion associated with each application. To the best of our knowledge, such

a method is applied for the �r st t ime to the classi� cation of encrypted t ra�c . The

second method called a Timestamp Classi�e r (TC) considers the deviat ion between

the t imestamp in the TLS/SSL Server Hello messageand the packet arrival t ime.

We validate the framework with experiments on three recent datasets gathered

on two edgerouters. They serve in a t raining phase to build application models. To

obtain the ground truth, we use a simple Domain Name System Classi� er (DNSC)

that ext racts application o ws based on the corresponding host names. We only

keep the  ows for which we can �nd the domain names of the chosen portals and

servicessowe are sure that t raining  ows correspond to the considered applications.

Then, we usethe proposed methods to classify chosenapplicationsand evaluate the

amount of t rue posit ivesand false posit ives. The chosen applications are represen-

tative of TLS/SSL encrypted t ra� c: PayPal, MBank (an on-line bank service),

Mozilla, Twit ter, Opera, Gadu-Gadu (a popular Polish instant messenger), and

Dropbox.

We test the proposed classi� ers separately or joint ly on di�e rent datasets and

we evaluate the contribut ion of each method to the � nal classi� cation result . In the

case of the most heterogenous datasets used for t raining and in the testing phase

(t he condit ions favorable for the methods), we achieve very good accuracy with
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more than 92% of the True Posit ive Rate and less than 1.5% of the False Posit ive

Rate. Under adversecondit ions for the methods, in the caseof a less representative

t raining dataset, the methods obtain slight ly less accurate results with the True

Posit ive Rate ranging from 77.7% to 80.1% and the False Posit ive Rate between

2.4% to 3.8%.

Our key contribut ions are:

ˆ we successfully apply stochastic modeling in terms of a �r st-order homoge-

neous Markov chain to the classi� cation of application o ws encrypted with

TLS/SSL;

ˆ we proposea simple discrimination method based on the deviation between

the t imestamp in the TLS/SSL Server Hello messageand the packet arrival

t ime. The method improves the accuracy of application classi� cation and

allows e�ci ent identi � cation of Skype  ows;

ˆ our experimental results show very good classi� cation performance on recent

datasets ree cting di�e rent network environments and condit ions.

10.2 Rel evant Publi cati ons for Par t I V

Maciej Korczy�nski and Andrzej Duda. Classifying TLS/S SL Encrypted Applica-

t ion Flows. to be submit ted.
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11.1 Rel ated Work

A lot of research e�or t concerned tra� c classi�c ation [7, 5, 99, 3, 52, 2, 19, 16,

13, 25, 96]. Recent attent ion has turned to the problem of revealing and ident ifying

encrypted applications and their underlying o ws [18, 23]. We brie y review this

recent work.

As new Internet applications started to use obfuscation methods (port mas-

querading, tunneling, and encrypt ion) to evade tra�c control and rest ricti ons, sim-

ple inspection of port numbers is no longer a reliable classi� cation mechanism [5, 15]

(cf. Sect ion 3.3.1). Moreover, payloadencrypt ion easily thwarts t radit ional payload-

based classi�c ation based on pattern matching. Host behavior-based approaches

[2, 19] (cf. Sect ion 3.3.3) can potent ially address the ine� ciency of content -based

methods. BLINC for example, proposesan interesting method based on observing

and recognizing models of host behavior and then classifying it s  ows according to

the models [2]. However, the method might be less e� ecti ve when only a small part

of behavioral information on individual hosts is available.

The second fundamentally di�er ent group of payload-independent approaches

use o w-based features such as average packet sizes, packets inter-arrival ti mes,

or  ow durations [3, 52, 25] (cf. Sect ion 3.3.4). A recent hybrid method tries to

ident ify TLS/SSL encrypted application layer protocols with a combination of a

signature-based and a o w-based statistical analysis scheme [25]. The method is

closely related to our proposal, however its objective is limit ed to the classi� cation
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of encrypted application layer protocols, while we concentrate more on an in-depth

analysis of the TLS/SSL protocol and revealing application  ows.

In our work, we adopt a payload-based approach (cf. Sect ion 3.3.2) t o demon-

strate that it is possible to e�ec t ively reveal and classify application  ows by in-

spect ing application layer protocols. Rissoet al. int roduced a taxonomy of payload-

basedclassi� cation methods [13] and argued that they are mainly based on pattern

veri� cation. A key challenge in encrypted t ra�c classi� cation is to replace t ra-

dit ional pattern veri �c ation with more sophisticated methods basedon stati sti cal

�ng erprints, for instance, by ident ifying groups of bits or bytesthat exhibit unique

dist ribut ions. Indeed, few researchers attempted to create such stati sti cal �n ger-

prints [18, 22, 23]. Bon�gl io et al. in their inspiring work have invest igated Skype

tra�c t ransported mainly by UDP [18]. Skype tra�c presents a major challenge

for classi�c ation, becauseof proprietary software and internal encrypt ion methods

(cf. Chapter 8). However, they concluded that the Skype messages can be iden-

t i�e d by examining the init ial port ion of the payload|so- called Start of Message

(SoM). Speci� cally, authors examine randomnessof init ial groups of bits by means

of a Chi-Square test. Some blocks of bit s are random, whereassome other appear

to be deterministic or mixed. While their innovative approach can be successfully

extended to other t ra� c classi� cation problems, the method depends on the obser-

vation of speci�c � elds in the proprietary Skype protocol. Our method applies to a

general case of the standard TLS/S SL encrypt ion protocol.

In our previous work [23] (cf. Part III ), we have considered the problem of

detect ing encrypted TCP Skype tra�c tunneled over SSL and classifying Skype

service  ows such asvoicecalls, skypeOut , video conferencing, chat, � le upload and

download. The init ial classi� cation phaseis based on Statistical Protocol IDent i-

� cation (SPID) algorithm [22] that analyzes somestat ist ical values of the packet

payload. Our experiments showed that inspect ing only the �r st � ve packets con-

taining the payload is su� cient t o reveal encrypted TCP Skype  ows tunneled over

SSL with Precision, Recall, and F-Measure equal to 100%.

11.2 TL S/ SSL Overv iew

Secure Sockets Layer (SSL) and it s successor Transport Layer Securit y (TLS)

are cryptographic protocols that provide secure communication between two part ies

over the Internet [104]. They encapsulate application protocols such as HTTP or

FTP.

Figure 11.1 ill ust rates the structure of TLS/SSL and its components:

ˆ Record Protocol: compressesand encrypts upper-layer data using the security
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In this chapter, we use the principlesof TLS/SSL protocol design to classify en-

crypted applications. In part icular, we proposetwo classi� ers that exploit di�er ent

aspects and characterist ics derived from TLS/SSL messages.

12.1 Ma rkov Classi�er

Our Markov Classi�e r (MC) takes into account message types in a TLS/SSL

session observed at a client or a server: we refer to the server-side MC as MCS

and to the client -side MC as MCC. Depending on the network environment , we

expect slight ly di�e rent characterist ics for the client side, whereas the service-side

model should be representative of all networks. Moreover, the separation of client-

and server-side classi�e rs helps tackling the problem of asymmetric rout ing (if a

network has two edge routers, routes may be asymmetric so each router can only

gather information on a o w in one direct ion).

We usethe following compact notation of messagestypes|t he decimal protocol

types and the Handshake messagetypes present in TLS/SSL headers (cf. Figure

12.1).

To de�n e the state spaceused in classi� cation basedon � rst -order homogeneous

Markov chain, let us consider again the messageexchangepresented in the previous

section (cf. Figure 11.2). This t ime, however, we will t ranslate the client -server
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protocol types remain visible, because the message types are encrypted. There-

fore, we cannot extr act either handshake Finished message(represented as22:) or

underlying type of Alert protocol (represented as 21:). To summarize, from the

diagram presented in Figure 12.2 we can distinguish one Markov chain per direc-

t ion represent ing the underlying application. The client-side session, corresponding

to MCC classi�c ation, is composed of two states, whereas the server-side session,

associated with MCS classi�c ation, consist of � ve states.

We consider discrete-t ime random variable X t for any t = t0; t1; :::; tn 2 T. It

takes values i t 2 f 1; :::; sg corresponding to the observed TLS/SSL messagetypes

during a session. We assume that X t is a � rst-order Markov chain [105, 29]:

P(X t = i t jX t � 1 = i t � 1; X t � 2 = i t � 2; : : : ; X 0 = i 0)

= P(X t = i t jX t � 1 = i t � 1): (12.1)

We furt her assume that the Markov chain is homogeneous, i.e. a stat e t ransit ion

from t ime t � 1 to t ime t is t ime-invariant :

P(X t = i t jX t � 1 = i t � 1) = P(X t = j jX t � 1 = i ) = pi;j ; (12.2)

with the t ransit ion matr ix [105, 29]:

P =

2

6
6
6
6
4

p1;1 p1;2 � � � p1;s

p2;1 p2;2 � � � p2;s
...

...
. . .

...

ps;1 ps;2 � � � ps;s

3

7
7
7
7
5

; (12.3)

where:
P s

j =1 pi;j = 1. We denote by:

Q = [q1; q2; : : : ; qs]; (12.4)

the Init ial Probabil ity Dist ribut ion (IPD) where qi = P(X t = i ) at t ime t = 0.

Finally, the probabil it y that a sequence of states X 1; : : : ; X T represent ing a

single TLS/SSL session occurs is as follows:

P(f X 1; : : : ; X T g) = qi �
TY

t=2

pi t � 1 ;i t : (12.5)

To ill ustr ate our approach, we present t he observed transit ion probabili ty ma-

t rices and the init ial probabil ity distributi ons of the MCS models for selected ap-

plications.
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Actually, Skype is a proprietary piece of software that uses its own internal

encrypti on mechanisms and a complex connecti on protocol designed for bypassing

� rewalls and establishing communication regardless of network policies[92, 93, 23].

Skype randomly selects ports and can switch to port 443 if it fails to establish a

connection on chosenports (cf. Chapter 8). Such technique is su�ci ent t o bypass

network-layer � rewalls, however, it results in establishing a parti cular TLS/SSL

session.

Table 12.1: Number of non-zero t ransit ion matrix elements for di�er ent ap-

plications

Application
# training o ws # transit ion

(# servers) matrix elements

Gadu-Gadu 1196(51) 63

MBank 2665(3) 29

Opera 4357(13) 26

PayPal 434 (6) 16

Mozilla 2669(21) 38

Twi tt er 1530(13) 36

Dropbox 3134(317) 43

12.1.2 Di scussion

The most important conclusion that we can draw from the examplesis that the

parameters of the Markov models for chosen applications di� er a lot, which is the

basis for accurate discrimination betweenapplications. We have also found that the

number of t ransit ion matrix elements in each application model signi� cant ly di�er .

Table 12.1 presents the number of non-zero elements in the t ransit ion matrix, the

number of t raining sessions, and the number of servers that generated them, in the

most representative Campus2dataset.

12.1.3 Traini ng Phase

To build the Markov models represent ing the applications behavior, our classi-

� er needs a training phaseduring which it analyzes ground-t ruth data containing

application o ws. The classi�e r analyzes t races pre-processed and � lt ered out by

tshark [106] so that only TLS/SSL encrypted packets are passed to further inspec-

t ion. Then, it usesthe DNSC classi� cation to create a benchmark dataset in which

application  ows are ident i� ed with a high con�d encelevel (cf. Section 13.1.1). The
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classi�e r only considers a limited number of �e lds|i t � rst ext racts the IP source

and destination addresses, the source and destination ports to create unique iden-

t i�e rs of each session. Further, it builds 14 single-directional models corresponding

to 7 chosen applications basedon all unencrypted TLS/SSL protocol and message

types.

12.1.4 Classi�ca ti on Phase

The classi� er � rst pre-process the test dataset t o ext ract application o ws and

then applies a decision process based on the Maximum Likelihood criterion [107].

Classi�c ation corresponds to amult i-hypothesisdecision problem. Morespeci� cally,

we consider seven hypothesis H i ; i = 1; : : : ; 7 corresponding to each of seven appli-

cations. We apply a classical approach basedon Maximum Likelihood criterion|w e

select the hypothesis under which the data sequence Y is most likely:

H = argmax
H i

logL(f Y1; : : : ; YT gjH i ); (12.6)

where L(f Y1; : : : ; YT g) is the likelihood of the input data sequence under each

hypothesis: L (f Y1; : : : ; YT g) � P(f X 1; : : : ; X T g) (cf. Eq. 12.5) is the probabili ty of

a messagesequence computed over each of the application models.

12.2 Ti mesta mp Cl assi�er

The second classi� er analyzesthe probabili ty distr ibut ion of the gmt unix time

� eld in the TLS/S SL Server Hello message. The init ial handshake Client Hello

and Server Hello messagesinclude a random str ucture used later in encrypt ion

composed of two � elds: gmt unix time (4 bytes) and random bytes (28 bytes) [104].

Depending on applications, the gmt unix time � eld contains di�e rent t imestamps:

the current t ime and date set by the sender clock, a random sequence of 32 bits, or

a constant value, and in part icular, 0.

TheTi mestamp Classi�e r ext racts thegmt unix time t imestamp from theServer

Hello messageand the packet recept ion instant from the capture �l e. It keeps only

the � rst 3 most signi� cant bytes of the value to neglect possible small t ime di�e r-

ences between the sender and the device that capturespackets. 3 bytesare consid-

ered separately as integer values. More formally, let us de�ne X i ; Yi 2 0; : : : ; 255

as random variablesof possible valuesof byte i 2 1; 2; 3 of the gmt unix time � eld

and the packet recepti on t imestamp, respectively. � i = jX i � Yi j, is a deviat ion

measure between the gmt unix time � eld and the corresponding packet t imestamp.
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Table 12.2: Content characteristics of the gmt unix time � eld

gmt unix time � i

Current t ime Const (= 0)

Random Rnd

Deterministic Const

The relationship between gmt unix time � eld and � i is summarized in Table 12.2:

we expect obtained �n gerprints to present random or deterministic dist ributi ons

depending on the application.

At t he init ial t raining phase, the method creates statist ical �n gerprints of the

t imestamp deviation for each application t ra� c. During the classi� cation phase,

the method computesthe deviation and compares with the tr a�c models by means

of the Kullback-Leibler (K-L) divergence [28]:

D (PjjQ) = K -L(P; Q) =
X

� i 2 0;:::;255

P(� i )log2
P(� i )
Q(� i )

: (12.7)

The K-L divergence is a measure of the di� erence between two probabil ity dis-

t ribut ions P(� i ) and Q(� i ). P(� i ) represents the dist ribut ion of the byte frequency

of � i in an observed  ow and Q(� i ) is the distribut ion corresponding to one of seven

application models. Classi� cation consists of comparing P(� i ) with all known ap-

plication models and select ing the one with the smallest averagedivergence. When

TC is a part of the classi� cation framework explained in Section 12.3, then we con-

sider probabili ty distribut ions Q(� i ), where � i refers to the analyzed session for all

application models.

Af ter theanalysisof Q(� i ) for sevenchosenapplicationsover theCampus2dataset

and for Skype over the Skypedataset, we have observed four groups of applications.

The largest group represented by Gadu-Gadu, Mozil la, Twi tt er, and Dropbox,

hasthesameQ(� i ) dist ributi on determinedby thecurrent t ime. Another group con-

tains PayPal with a uniform dist ribut ion. The Q(� i ) distribut ions of MBank and

Opera indicate that in both cases around 80%of all sessions hasthe gmt unix time

� eld determined by the clock while the remaining 20% of values are evenly dis-

t ributed. Finally, the most interesting statist ical �n gerprint corresponds to the

Skype tra�c tunneled through TLS/SSL protocol: the gmt unix time � eld is deter-

ministic and interpreted by network protocol analyzers asJan 31, 2004 18:23:18

CET|t he whole 32-byte long random structure is in fact deterministic (note that

it is normally used in the encrypt ion process). Nevertheless, it is not so important
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for Skype|it uses TLS/SSL only to establish a tunnel bypassing � rewalls and it

encrypts its data with a proprietary protocol.

So, in general, we can only determine a classof applications by inspecting the

t imestamps. However, in thecaseof Skype, thedeterminist ic valueof gmt unix time

givesusan accuratesignaturefor ident ifying theSkypetra�c tunneledover TLS/SSL.

12.3 Classi�ca t ion Framework

Our classi�c ation framework is buil t upon the Naive Bayes Classi�e r (NBC)

[30] that combines previously described methods, i.e. two Markov Classi� ers corre-

sponding to server and client -side models and the Ti mestamp Classi� er that con-

siders the randomness of t imestamps. The Naive Bayes Classi�e r has been used

extensively in the domain of t ra� c classi� cation [3, 18] and proved to be very ef-

fective despite it s simplicity [30].

The Naive Bayes Classi�e r applies the Bayes theorem with a st rong (naive)

assumpt ion of the independence of input features describing an object . Let vector

F = F1; : : : ; Fn represent t he set of n features used to categorize an object in one

of C classes. By applying the Bayes theorem we can quant ify probabili ty P(CjF )

that the object represent classC using the a-priori probabil ity P(F jC):

P(CjF ) =
P(C \ F )

P(F )
=

P(F jC)
P(F )

� P(C): (12.8)

As we assume that each feature Fi is condit ionally independent of another fea-

ture Fj , where i 6= j and i; j 2 f 1; : : : ; ng, we can wri te:

P(F jC) =
Y

i

P(Fi jC): (12.9)

In our classi�c ation framework, di�er ent classi� ers play the role of features.

More speci�c ally, class C is associated with one of seven applications, whereas

Fi may represent t he server-side or/an d the client -side messagechain or/and the

t imestamp �n gerprint of the session to analyze. The �n al decision discriminating

between di�er ent applications is made based on the Maximum Likelihood crit e-

rion (cf. Eq. 12.6). Finally, in the presented framework, we naively assume the

independence between various classi�e rs, e.g., between MCS applied to messages

coming from the server side and MCC used to compute the probabili ty of message

sequence originated at the client side. However, asour framework doesnot require a
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strong independenceassumpt ion of underlying classi� ers, NBC results in very good

accuracy shown in the next section.
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13.1 Ex perim ent s

In this sect ion, we present t he result s of applying the proposed classi�c ation

framework to t race datasets.

13.1.1 Da t asets

We have gathered threedatasets at two edgerouters located in Poland. Campus1

and Campus2datasets come from a link connect ing a campus network of the AGH

University of Science and Technology in Cracow to the Internet. The link has the

capacity of 70 Mbit s/s for incoming and 30 Mbits/s for outgoing tr a�c . Campus1

datasetcontains a one day long trace star t ing on Thursday, March 1, 2012,whereas

the 24 hours long Campus2dataset was obtained start ing on Saturday, March 26,

2012. Both datasets contain t ra�c generated by standard services such as web,

chat, mail, VoIP, � le t ransfer, or streaming applications. The Campus2dataset

is the most heterogenous one wit h numerous applications and a large number of

active online users reaching 500 people (majority of users are university students

and faculty). Due to strict policiesenforced by �r ewalls and restrict ions for certain

streaming and p2p applications, users commonly tunnel rest ricted t ra�c .

Enterprise dataset contains t races gathered during a 93 hour period start ing

on Sunday, July 1, 2012 on a 20 Mbit /s link connecting a small IT company to
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the Internet. The tra�c re ects the company pro�l e and mainly contains o�ce

applications such asmail, VoIP, or web. There are no st rict � rewall rulesapplied at

the edge router. Enterprise dataset contains more homogeneous tra� c than the

two datasets captured on the campus.

To establish the ground truth, we have developed a Domain Name System Clas-

si�e r (DNSC) to ext ract and classify TLS/S SL application o ws according to their

domain names. More speci�c ally, DNSC matches hostnamesagainst our array of

signature st rings like for example twit ter, twttr in case of Twi tt er. The method

is simple and results in a very high con�d ence level con�r med by manual payload

inspection. Nevertheless, we might not cover all instances of signatures for a par-

t icular application. Another constraint of the approach is that we cannot obtain

the instances of applications if we are not able to resolve IP addresses into the

corresponding domain names. To overcometheselimitations, we have used in our

experimental evaluation only the t ra�c for which the IP addressresolut ion was

possible and corresponding st rings are str aight forward and unambiguous.

Table 13.1: Applications, the number of application  ows, the number of

servers vs. number of clients in threedatasets

Application Campus1 Campus2 Enterprise

PayPal 546 (9 - 96) 434 (6 - 97) 172 (13 - 11)

Twi tt er 1411(17 - 29) 1530(13 - 30) 157 (11 - 6)

Dropbox 1160(171 - 95) 3134(317 - 133) 177 (31 - 9)

Gadu-Gadu 987 (50 - 321) 1196(51 - 343) 30 (17 - 4)

MBank 321 (2 - 49) 2665(3 - 51) 44 (2 - 6)

Opera 3246(15 - 140) 4357(13 - 132) 2034(13 - 16)

Mozilla 2436(20 - 271) 2669(21 - 292) 2867(24 - 68)

Table 13.1 shows the parameters of three datasets: the number of application

 ow samplesand in the brackets, the number of servers versus the number of clients

that use the service (for example, Campus1dataset contains the t racesof 321 users

who have connected to 50 Gadu-Gadu servers in 987  ows).

Table 13.2 presents more statistics on the relationship between datasets: the

corresponding number of servers and clients common to respecti ve datasets (e.g.,

there are 6 common PayPal servers in Campus1and Campus2datasets as well as 46

common clients). Their purpose is to estimate the applicabil it y of datasets. From

the joint analysis of two presented tables,in case of Gadu-Gadu for example, we can

expect very good classi�c ation results if the server-side behavior is computed on the

basis of the Campus2dataset and is applied to the Enterprise dataset (Campus2
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Table 13.2: Applications and the corresponding number of servers and clients

common to respective datasets

Application
Campus1 Enterprise Enterprise

\ Campus2 \ Campus1 \ Campus2

PayPal 6 - 46 2 - 2 -

Twi tt er 12 - 8 9 - 9 -

Dropbox 113 - 65 19 - 21 -

Gadu-Gadu 44 - 230 16 - 16 -

MBank 1 - 12 1 - 1 -

Opera 13 - 105 12 - 11 -

Mozilla 17 - 169 6 - 6 -

contains almost all Gadu-Gadu servers accessed in Enterprise , 16 out of 17). By

contrast, we may expect slight ly worseresults for Gadu-Gadu client models because

of a small number of commonclients (Campus2has343clientsdi� erent from 4 clients

in the Enterprise dataset).

Finally, we will often refer to Skype as an example of t ra�c tunneled through

TLS/SSL. The evaluation runs on a set of packet t races referred to asSkypedataset

generated in the experiments of classifying Skype service  ows (cf. Sect ion 9.2.1).

13.1.2 Cri ter ia for Classi�ca ti on Perform ance

We assume that the classi� cation based on the DNSC reference classi� er pro-

vides the ground truth and we evaluate the proposed classi� ers wit h respect t o its

classi�c ation decisions. We consider two meaningful metrics to assess the perfor-

mance of a classi�c ation method: the True Posit ive Rate and False Posit ive Rate,

denoted as TPR and FPR, respect ively (cf. Eq. 3.1, 3.2). TPR is known as sen-

siti vity , and 1� FPR is commonly referred to as speci�c ity. True Posit ive occurs

when the classi� cation result is consistent with the classi� cation decision taken by

DNSC and the application session is correct ly classi�e d as a given application, e.g.,

a PayPal session is accurately recognized as PayPal. Conversely, False Posit ive

occurs when the classi� cation result is inconsistent with the decision taken by the

reference classi�e r and a session is incorrectl y classi� ed, e.g., a Twi tt er session is

falsely recognized as PayPal.

13.1.3 Classi�ca ti on Resul t s

In th is section, we report on the classi� cation results of the proposedframework:

we �r st test MCS+ MCC+ TC and MCS+TC on Campus1and Enterprise datasets,
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respectively when Campus2dataset served for t raining.

Table 13.3: Result s for MCS+MCC+ TC on Campus1 dataset: applications,

total number  ows, number of not classi� ed o ws, absolute TP

and FP as well as their rates. Training set: Campus2

Application #  ows # m issed # TP TPR #F P FPR

PayPal 546 55 437 0.89 54 0.006

Twi tt er 1411 30 1138 0.824 174 0.021

Dropbox 1160 1 1102 0.951 32 0.004

Gadu-Gadu 987 18 939 0.969 24 0.003

MBank 321 20 277 0.92 73 0.008

Opera 3246 224 2832 0.937 217 0.032

Mozilla 2436 5 2375 0.977 80 0.011

Table 13.3 shows the result s for MCS+MCC+ TC classi� ers. Let us take the

example of Mozil la for which we observe that the TP rate is very large(97.7%) with

relatively small rate of FP (1.1%). The good results come from the fact that for

Mozilla, Campus1and Campus2share common servers and clients (Campus2covers

17 out of 20 servers and 169 out of 271 clients that also occurred in the analyzed

Campus1dataset, cf. Tables 13.1 and 13.2).

In the case of Twi tt er, we can observe less accurate results (TPR of 82.4%, FPR

of 2.1%), because the overlap of clients and servers in the two datasets is not so

signi�c ant . By manual inspect ion, we have observed that the degradation in the

TP rate for Twitt er is due to some similarit ies of its MC models with Opera and

MBank, which also results in a slight ly higher rate of FP for Opera and MBank,

becausesome Twi tt er sessions are falsely classi� ed as either Opera or MBank.

Table 13.4 presents the results for the MCS+T C classi� ers on the Enterprise

dataset with the Campus2dataset used for tr aining. We can seethat for Gadu-

Gadu, the classi�e rs have correctly recognized all application instanceswith only

two sessions incorrectly classi� ed as Gadu-Gadu. A similar reasoning applies to

the Enterprise dataset|t he t raining Campus2dataset covers 16 out of 17 servers

(cf. Tables 13.1 and 13.2). However, notice that 17 Gadu-Gadu sessions (t hat

correspond to 56% of all application instances) were not classi� ed. By manually

inspecting the o ws, wehaveobservedslight ly di� erent TLS/SSL messagesequences

compared to those in the t raining phase.

Al l MBank sessions were correctly classi� ed, but this t ime, there were no un-

recognized sessions (marked in Table 13.4 as missed). We can explain lessaccurate

results with TPR equal only to 64.3% for PayPal by a small number of session
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Table 13.4: Results for MCS+ TC on Enterprise dataset: applications, total

number  ows, number of not classi� ed  ows, absolute TP and FP

as well as their rates. Training set: Campus2

Application #  ows # m issed # TP TPR #F P FPR

PayPal 172 29 92 0.643 212 0.04

Gadu-Gadu 30 17 13 1 2 0.000

Twi tt er 157 0 125 0.796 154 0.029

Dropbox 177 1 168 0.955 16 0.003

MBank 44 0 44 1 52 0.010

Opera 2034 4 1723 0.848 459 0.135

Mozilla 2867 2 2319 0.809 49 0.019

instancesin the t raining phase. Al l manually inspected PayPal o ws either slight ly

di� er from the pre-computed model or they are classi�e d as other applications for

which the models were const ructed using a richer set of session instances and have

a complex st ructure allowing for diversemessages sequences.

13.1.4 Classi�er Selecti on

In this part , we want t o evaluate the impact of the proposedclassi� ers on the

� nal classi�c ation decision by the framework. For all experiments reported in this

section, weanalyzeup to � vet ransit ionsof both server and client -sideMarkov chains

(we explain the limit of �v e t ransit ions in the discussion of parameter calibration

in Sect ion 13.1.5). We consider the analysis of Campus1and Enterprise datasets

under the t raining phaseon Campus2aswell astheanalysis of Campus1and Campus2

datasetsunder thet raining phaseon Enterprise . Wepresent t heresultsby plott ing

TPR on y-axes and FPR on x-axes (cf. Figure 13.1)|t he values correspond to

the average TPR and FPR obtained for each of seven applications, i.e. Gadu-

Gadu, MBank, Opera, PayPal, Mozilla, Twitt er, and Dropbox. We test our Bayes

framework composed of: the single MCS, MCC, or TC classi� er, and the joint

MCS+T C, MCC+T C, MCS+MCC+ TC classi� ers.

Let us � rst focus on the most heterogeneous Campus2dataset used for t raining.

The left -hand side of Figure 13.1 presents the result s of the analysis on Campus1and

Enterprise datasets. We can observe that Markov models computed for the server

side give signi�c ant ly better results than the models constructed at the client side

regardless of the dataset used in the classi�c ation process. Server-side models are

much easier to build and are more universal across di�e rent networks, while client -

side models are more network-speci� c. Recall that clients on di�er ent networks
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Enterprise dataset.

Enterprise asa training dataset leads to slight ly worse results than in the pre-

viouscase, becausethe MC models do not cover enough TLS/SSL session instances

to be e�e ctive compared to the associated Campus1and Campus2datasets (cf. Ta-

bles 13.1 and 13.2). The results reported in the right t op graph of Figure 13.1

indicate that the set of MCS+TC performs slight ly better (T PR of 80.1%, FPR of

3.8%) than the joint ly usedMCC+ MCS+ TC classi�c ation (TPR of 78.1%n FPR of

3.3%). Finally, the result s obtained for the classi� cation of the most heterogeneous

Campus2datasetare much worse for the MCS classi� er, which leads to the selecti on

of MCS+MCC+ RC for the classi� cation framework (cf. the right bottom graph of

Figure 13.1).

From the above experimental results, we can conclude that

ˆ MCS is the essent ial part of the classi� cation framework. If we build the

application models on a heterogenous training dataset that covers a wide

rangeof session instances, they can apply acrossdi�er ent subnetworks;

ˆ MCC can bevery e� ectivewhen the framework analyzes thedatasets collected

on the samesubnetwork usedfor collecting t raining datasets;

ˆ the joint usageof TC with Markov classi� ers gives considerably bett er classi-

� cation result s compared to the performance only based on MCS and MCC.

13.1.5 Parameter Calibr ati on

In this section, we invest igate the sensit ivity of a separately used server-side

or client -side Markov classi�e r on the number of considered transiti ons in a given

Markov chain. We perform the sensit ivity analysis on the most heterogenous Cam-

pus2 dataset pre-classi�e d by applying DNSC classi� cation described in Section

13.1.1. TP and FP rates represent t he average values obtained for each of seven

considered applications. Figure 13.2 presents the impact of the number of state

t ransit ions used in both t raining and test ing phaseon TP and FP rates. We can

notice that for both TPR and FPR, classi� cation based on only 5 t ransit ions is

roughly as accurate as classi� cation based on 100 transit ions. These results high-

light t he scalabil ity of the proposed framework|i t requires considering only several

� rst TLS/S SL messages to obtain very good classi� cation result s.

13.2 Concl usion

In this part , we have de�ned a framework based on two complementary meth-

ods for classifying applications. The � rst one usesa stochast ic model represent ing
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Concl usions

Even though the domain of t ra�c classi� cation is relat ively well explored, our

primary goal is to enrich exist ing research e�or ts by our own contr ibut ions. The

issues considered in this thesis were inspired by common problems existing in real -

operational networks. Thus, we have tried to bridge the gap between academia and

professional practice. In this chapter, we summarize the thesis claims and highlight

the future direct ions of this research.

E�cien cy and scalab i li t y

In Part II , wehaveproposed a detection scheme for high-volumeSYN  ooding

attacks and low-volume portscan activity. We have demonstrated that our

method achievesa high attack detection rate (True Posit ive Rate). Moreover,

in comparison wit h exist ing methods, we have reduced the False Posit ive

Rate, i.e., when legit imate packets are classi�e d asmaliciousones. Finally, by

using sampling methods, we have signi�c ant ly reducedthe inu enceof packet

sampling on the performance of the detect ion scheme. However, as far as

scalabili ty is concerned, we believe that the future practical implementation

based on Snort [61] or Bro [108] might be even more convincing than the

evaluation process based on the proof-of-the-concept algorithm presented in

this thesis.

Challen ges ahead

Among various challenges in the domain of t ra� c analysis, classifying en-

crypted  ows seems to be the most urgent one because, an increased number

of applications make use of encrypt ion, e.g., Tor [100], I2P [101], BitTorrent

[102], IM ule [103], Skype [93]. In Part III , we have proposed a classi�c ation

method for recognizing Skype encrypted t ra�c tunneled over SSL and iden-

t ifying its service  ows. Then, in Part IV , we have de� ned a more generic

framework based on two complementary methods for classifying applications

encrypted with TLS/SSL protocol. Our results shed a new light on the poten-

t ial of approaches based on application-layer protocol analysis for encrypted

and tunneled t ra�c .
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R efu te th e myth s

In the research community, there is a number of common beliefs that should

beveri�e d such astheopinion that port -based classi� cation approachesare in-

adequate any longer in t ra�c classi� cation, or that DPI methods do not scale

to hight bandwidth rates. In our work, we argue the belief that payload-based

methods always fail in case of encrypted t ra�c. In Part IV , we have inves-

t igated in-depth TLS/S SL header structure and we have proposed a frame-

work for encrypted t ra�c classi� cation. We believe that there are still many

"myths" in the domain of t ra�c classi� cation that should be invest igated in

detail and perhaps revised.

Form alizat ion of t he domain

A comparison (if possible) between di�e rent methodologies is an important

part of any evaluation process. However, it is a di�cu lt task, not only due

to the lack of a shared testing platform or easily available packet t races, but

basically becauseof the lack of a common understanding of concepts such as

the de� nit ion of the classi� cation classes. In this thesis (cf. Section 3.2), we

have addressed this parti cular problem by proposing threeclassi� cation goals,

i.e., we propose to classify tr a�c according to its category, application-level

protocol, or application that generates t ra�c . Moreover, in Section 3.3 we

have presented an extended taxonomy for approaches in t ra� c classi� cation

based on the research presented in this thesis. For completeness, another

attempt aiming at formalizing the domain based on ontology paradigms has

beenproposed recent ly [109].

Pr actic al deployment

Many of research methodologies, especially based on statistical methods, have

never been evaluated in the real- -operational networks (wit h some excep-

t ions, for example, TCP STatistic and Analysis Tool (Tstat) [110] or Hybrid

Tra�c Ident i� cation (HTI) [24]). Thus, as ment ioned before, one of interest -

ing research direct ions would be practical implementation and deployment of

methods presented in this thesis in a campus network.

In ter -domai n p ort abi li t y

Al though, we have presented int rusion detection as a sub-domain of t ra�c

classi�c ation problem, it is often considered in the li terature as a separate

research subject. Thus, webelieve that applying someof exist ing classi�c ation

methods in detecti on of int rusive activit y would be an interesti ng research

subject. Even if not presented in this thesis, we have successfully applied
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the method proposed in Part III to the detection of malicious t ra�c |t he

propagation of Worm.Win32.Skipi.b that spreads over the Skype messenger

[111]. In the future work, we would like to explore how the proposed methods

can be extended to other classi� cation problems.

Ap pr opri ate featu re selectio n

The problem of feature select ion and parameter calibration has been well

studied in the domain of t ra�c classi�c ation including the presented thesis.

However, we believe that some standard recommendations should be int ro-

duced to separate t raining t racesfrom datasets used in parameter tuning and

in the evaluation process. Indeed, feature select ion and parameter calibrat ion

methods tend to opt imize performance results for part icular datasets. More-

over, in the future work, we may consider automatic feature selection and

calibrat ion processas a part of pract ical implementations.

H ybri d appro aches

As it wasment ioned earlier, in recent years, we have observed that application

developers tend to evade tra�c classi� cation by encrypt ion and other obfus-

cation methods. Even somegovernments are interested in an anonymous p2p

technology, for example, Tor project aims at protecting users' privacy [100].

As a result , more complexed, hybrid methods combining di� erent approaches

should be applied in the future such as the one presented in Part III of the

thesis, which puts together t ra� c  ow featuresand complex DPI elements to

ident ify Skype service o ws.

Gr ound tru t h

The last but not least issue revised in the thesis conclusions is related to

pre-labeled datasets, namely to the ground-t ruth information, crucial for ev-

ery evaluation process. In Part IV , we have developed a simple method called

DNSC to ext ract encrypted application o wsaccording to their domain names.

Al though the method can classify even encrypted t ra�c with high con�d ence

level, it is characterized by a limited classi� cation scope. As a result, we be-

lieve that a common testbed based on mult iple reliable, but not necessarily

scalable or light weight algorithms is required for cross-checking and generat-

ing a valid ground truth.
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